Performance analysis of coherent equal gain combining over Nakagami-m fading channels

We study the exact average output signal-to-noise ratio (SNR) and symbol error rate (SER) of M-ary phaseshift-keying (PSK) signals with coherent equal gain combining reception. The analysis assumes independent Nakagami-m (1960) fading paths, which are not necessarily identically distributed. On one hand, we use geometric summations to obtain closed-form expressions for the average output SNR over diversity paths with an exponentially decaying power delay profile. On the other hand, capitalizing on an alternative integral representation of the conditional SER along with Gauss-Hermite quadrature integration, we derive an average SER expression in the form of a single finite-range integral and an integrand composed of tabulated functions. We also present a simpler but approximate approach for the closed-form evaluation of the SER of these signals over independent identically distributed Nakagami-m fading paths.

[1]  Gordon L. Stuber,et al.  Principles of Mobile Communication , 1996 .

[2]  Homayoun Hashemi,et al.  Impulse Response Modeling of Indoor Radio Propagation Channels , 1993, IEEE J. Sel. Areas Commun..

[3]  Larry J. Greenstein,et al.  A model for the multipath delay profile of fixed wireless channels , 1999, IEEE J. Sel. Areas Commun..

[4]  J. Gil-Pelaez Note on the inversion theorem , 1951 .

[5]  Laurence B. Milstein,et al.  Coherent DS-CDMA performance in Nakagami multipath fading , 1995, IEEE Trans. Commun..

[6]  Mohamed-Slim Alouini,et al.  A unified approach for calculating error rates of linearly modulated signals over generalized fading channels , 1998, IEEE Trans. Commun..

[7]  Keith Q. T. Zhang Probability of error for equal-gain combiners over Rayleigh channels: some closed-form solutions , 1997, IEEE Trans. Commun..

[8]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[9]  George L. Turin,et al.  A statistical model of urban multipath propagation , 1972 .

[10]  J. Proakis,et al.  Probabilities of Error for Adaptive Reception of M-Phase Signals , 1968 .

[11]  Xiaodai Dong,et al.  Signaling constellations for fading channels , 1999, IEEE Trans. Commun..

[12]  Mohamed-Slim Alouini,et al.  A unified approach to the performance analysis of digital communication over generalized fading channels , 1998, Proc. IEEE.

[13]  M. Nakagami The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .

[14]  Norman C. Beaulieu,et al.  Analysis of equal gain diversity on Nakagami fading channels , 1991, IEEE Trans. Commun..

[15]  Vijay K. Bhargava,et al.  Exact evaluation of maximal-ratio and equal-gain diversity receivers for M-ary QAM on Nakagami fading channels , 1999, IEEE Trans. Commun..

[16]  Q. T. Zhang A simple approach to probability of error for equal gain combiners over Rayleigh channels , 1999 .

[17]  Norman C. Beaulieu,et al.  Microdiversity on Rician fading channels , 1994, IEEE Trans. Commun..

[18]  Valentine A. Aalo,et al.  Average error rate for coherent MPSK signals in Nakagami fading channels , 1996 .

[19]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[20]  Mohamed-Slim Alouini,et al.  A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels , 1998, IEEE Trans. Commun..

[21]  Vijay K. Bhargava,et al.  Unified analysis of equal-gain diversity on Rician and Nakagami fading channels , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[22]  Laurence B. Milstein,et al.  On the performance of a higher order alphabet size in CDMA , 1997, IEEE Communications Letters.

[23]  J. Craig A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations , 1991, MILCOM 91 - Conference record.

[24]  Sandeep Chennakeshu,et al.  Error rates for Rayleigh fading multichannel reception of MPSK signals , 1995, IEEE Trans. Commun..

[25]  S. Rice,et al.  Distribution of the Phase Angle Between Two Vectors Perturbed by Gaussian Noise , 1982, IEEE Trans. Commun..

[26]  Norman C. Beaulieu,et al.  An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables , 1990, IEEE Trans. Commun..