Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy)

[1]  L B Lusted,et al.  Radiographic applications of receiver operating characteristic (ROC) curves. , 1974, Radiology.

[2]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[3]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[4]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[5]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[6]  Geomorphology of the Agri valley, southern Italy , 1983 .

[7]  E. E. Brabb Innovative approaches to landslide hazard and risk mapping , 1985 .

[8]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[9]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[10]  J. Friedman Multivariate adaptive regression splines , 1990 .

[11]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[12]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[13]  P. Reichenbach,et al.  Gis Technology in Mapping Landslide Hazard , 1995 .

[14]  C. Chung,et al.  Multivariate Regression Analysis for Landslide Hazard Zonation , 1995 .

[15]  David M. Cruden,et al.  LANDSLIDE TYPES AND PROCESSES , 1958 .

[16]  F. Mantovani,et al.  Remote sensing techniques for landslide studies and hazard zonation in Europe , 1996 .

[17]  P. Reichenbach,et al.  Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy , 1999 .

[18]  S. Menard Applied Logistic Regression Analysis , 1996 .

[19]  J. Corominas,et al.  Assessment of shallow landslide susceptibility by means of multivariate statistical techniques , 2001 .

[20]  A. Clerici,et al.  A procedure for landslide susceptibility zonation by the conditional analysis method , 2002 .

[21]  Fausto Guzzetti,et al.  Impact of mapping errors on the reliability of landslide hazard maps , 2002 .

[22]  John C. Davis,et al.  Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA , 2003 .

[23]  J. Corominas,et al.  A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain) , 2003 .

[24]  R. Soeters,et al.  Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment , 2003 .

[25]  S. Weiss,et al.  GLM versus CCA spatial modeling of plant species distribution , 1999, Plant Ecology.

[26]  V. Doyuran,et al.  Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey , 2004 .

[27]  V. Doyuran,et al.  A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate , 2004 .

[28]  Lionel C. Briand,et al.  Using multiple adaptive regression splines to support decision making in code inspections , 2004, J. Syst. Softw..

[29]  T. Hastie,et al.  Using multivariate adaptive regression splines to predict the distributions of New Zealand ’ s freshwater diadromous fish , 2005 .

[30]  Lucila Ohno-Machado,et al.  The use of receiver operating characteristic curves in biomedical informatics , 2005, J. Biomed. Informatics.

[31]  Saro Lee,et al.  Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis , 2005 .

[32]  Ricco Rakotomalala,et al.  TANAGRA : un logiciel gratuit pour l'enseignement et la recherche , 2005, EGC.

[33]  A. Brenning Spatial prediction models for landslide hazards: review, comparison and evaluation , 2005 .

[34]  R. Soeters,et al.  Landslide hazard and risk zonation—why is it still so difficult? , 2006 .

[35]  M. Eeckhaut,et al.  Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium) , 2006 .

[36]  P. Reichenbach,et al.  Estimating the quality of landslide susceptibility models , 2006 .

[37]  A. Clerici,et al.  A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines) , 2006 .

[38]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[39]  T. Fernández,et al.  Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain) , 2007 .

[40]  H. A. Nefeslioglu,et al.  An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps , 2008 .

[41]  Christian Conoscenti,et al.  GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy) , 2008 .

[42]  H. A. Nefeslioglu,et al.  Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey) , 2008 .

[43]  P. Frattini,et al.  Comparing models of debris-flow susceptibility in the alpine environment , 2008 .

[44]  H. A. Nefeslioglu,et al.  Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey) , 2008 .

[45]  S. L. Kuriakose,et al.  Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview , 2008 .

[46]  G. Rawat,et al.  Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method , 2009 .

[47]  S. Schnabel,et al.  Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies , 2009 .

[48]  P. Reichenbach,et al.  Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium , 2009 .

[49]  Ángel M. Felicísimo,et al.  Modelling the occurrence of gullies in rangelands of southwest Spain , 2009 .

[50]  S. Bai,et al.  GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China , 2010 .

[51]  A. Shakoor,et al.  A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses , 2010 .

[52]  P. Reichenbach,et al.  Optimal landslide susceptibility zonation based on multiple forecasts , 2010 .

[53]  Christian Conoscenti,et al.  Exporting a Google Earth™ aided earth-flow susceptibility model: a test in central Sicily , 2012, Natural Hazards.

[54]  Christian Conoscenti,et al.  The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain , 2011 .

[55]  Peter M. Atkinson,et al.  Autologistic modelling of susceptibility to landsliding in the Central Apennines, Italy , 2011 .

[56]  S. Reis,et al.  A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics , 2011 .

[57]  Candan Gokceoglu,et al.  Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey) , 2011 .

[58]  M. Conforti,et al.  Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy) , 2012, Natural Hazards.

[59]  B. Schröder,et al.  A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy , 2011 .

[60]  K. N. Tiwari,et al.  Determining the optimum cell size of digital elevation model for hydrologic application , 2011 .

[61]  M. Seta,et al.  Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: A contribution to the unbiased selection of causal factors , 2011 .

[62]  D. Costanzo,et al.  Slope units-based flow susceptibility model: using validation tests to select controlling factors , 2012, Natural Hazards.

[63]  C. Irigaray,et al.  Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain) , 2012 .

[64]  Boris Schröder,et al.  How can statistical models help to determine driving factors of landslides , 2012 .

[65]  Saro Lee,et al.  Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS , 2012 .

[66]  Á. Felicísimo,et al.  Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study , 2013, Landslides.

[67]  C. Irigaray,et al.  Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy) , 2014, Landslides.

[68]  Martin Mozina,et al.  Orange: data mining toolbox in python , 2013, J. Mach. Learn. Res..

[69]  E. Rotigliano,et al.  Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy) , 2014 .

[70]  S. Pascale,et al.  Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy) , 2014 .