Computing Slow Manifolds of Saddle Type

Slow manifolds are important geometric structures in the state spaces of dynamical systems with multiple time scales. This paper introduces an algorithm for computing trajectories on slow manifolds that are normally hyperbolic with both stable and unstable fast manifolds. We present two examples of bifurcation problems where these manifolds play a key role and a third example in which saddle-type slow manifolds are part of a traveling wave profile of a partial differential equation. Initial value solvers are incapable of computing trajectories on saddle-type slow manifolds, so the slow manifold of saddle type (SMST) algorithm presented here is formulated as a boundary value method. We take an empirical approach here to assessing the accuracy and effectiveness of the algorithm.

[1]  Kurt Lust,et al.  Improved numerical Floquet Multipliers , 2001, Int. J. Bifurc. Chaos.

[2]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[3]  N. Kopell,et al.  Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .

[4]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[5]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[6]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[7]  David Terman,et al.  Uniqueness and stability of periodic bursting solutions , 1999 .

[8]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[9]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[10]  J. Guckenheimer,et al.  HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.

[11]  John Guckenheimer,et al.  Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .

[12]  Gert Sabidussi,et al.  Normal Forms, Bifurcations and Finiteness Problems in Differential Equations , 2004 .

[13]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[14]  Andreas Griewank,et al.  ODE Solving via Automatic Differentiation and Rational Prediction , 1996 .

[15]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[16]  A. Gorman,et al.  Changes in the intracellular concentration of free calcium ions in a pace‐maker neurone, measured with the metallochromic indicator dye arsenazo III. , 1978, The Journal of physiology.

[17]  Robert D. Russell,et al.  Algorithm 569: COLSYS: Collocation Software for Boundary-Value ODEs [D2] , 1981, TOMS.

[18]  Peter Szmolyan,et al.  Transversal heteroclinic and homoclinic orbits in singular perturbation problems , 1991 .

[19]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..

[20]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[21]  侯一平 关于神经科学原理(PRINCIPLES OF NEUROSCIENCE)课程的介绍 , 2000 .

[22]  Eve Marder,et al.  Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks , 1994, Journal of Computational Neuroscience.

[23]  Robert D. Russell,et al.  Collocation Software for Boundary-Value ODEs , 1981, TOMS.

[24]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[26]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[27]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[28]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[29]  John Guckenheimer,et al.  Bifurcations of relaxation oscillations , 2004 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[32]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[33]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.

[34]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[35]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[36]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[37]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[38]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .

[39]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[40]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[41]  A. Selverston,et al.  Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. , 1993, Journal of neurophysiology.

[42]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .