Quantum properties of correlations have a key role in disparate fields of physics, from quantum information processing, to quantum foundations, to strongly correlated systems. We tackle a specific aspect of the fundamental quantum marginal problem: we address the issue of deducing the global properties of correlations of tripartite quantum states based on the knowledge of their bipartite reductions, focusing on relating specific properties of bipartite correlations to global correlation properties. We prove that strictly classical bipartite correlations may still require global entanglement and that unentangled---albeit not strictly classical---reductions may require global genuine multipartite entanglement, rather than simple entanglement. On the other hand, for three qubits, the strict classicality of the bipartite reductions rules out the need for genuine multipartite entanglement. Our work sheds new light on the relation between local and global properties of quantum states, and on the interplay between classical and quantum properties of correlations.