High Frequency of Inversions During Eukaryote Gene Order Evolution

We propose the hypothesis that DNA inversions have been a much more significant factor in genomic evolution than previously supposed. We suggest that a high frequency of small inversions may be a general feature of genome evolution in eukaryotes, based on anecdotal evidence from representatives of three eukaryotic kingdoms: fungi, plants and animals.

[1]  D. Sankoff,et al.  Synteny conservation and chromosome rearrangements during mammalian evolution. , 1997, Genetics.

[2]  D. Page,et al.  Four evolutionary strata on the human X chromosome. , 1999, Science.

[3]  M. Cotton,et al.  Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana , 1999, Nature.

[4]  Kenneth H. Wolfe,et al.  Gene Duplication and Gene Conversion in the Caenorhabditis elegans Genome , 1999, Journal of Molecular Evolution.

[5]  M. Seldin,et al.  Human/mouse homology relationships. , 1996, Genomics.

[6]  W Miller,et al.  Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Sasaki,et al.  Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? , 1999, Genome research.

[8]  H. Hutter,et al.  Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. , 2000, Science.

[9]  D. Watkins-Chow,et al.  Genetic mapping of 21 genes on mouse chromosome 11 reveals disruptions in linkage conservation with human chromosome 5. , 1997, Genomics.

[10]  E. Coissac,et al.  A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. , 1997, Molecular biology and evolution.

[11]  R. Gibbs,et al.  Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. , 1998, Genome research.

[12]  B. Dujon,et al.  Random exploration of the Kluyveromyces lactis genome and comparison with that of Saccharomyces cerevisiae. , 1998, Nucleic acids research.

[13]  J. Gilley,et al.  Extensive gene order differences within regions of conserved synteny between the Fugu and human genomes: implications for chromosomal evolution and the cloning of disease genes. , 1999, Human molecular genetics.

[14]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[15]  W Miller,et al.  Comparative sequence analysis of the mouse and human Lgn1/SMA interval. , 1999, Genomics.

[16]  Victor V. Solovyev,et al.  INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects , 1999, Nucleic Acids Res..

[17]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[18]  Eugen C. Buehler,et al.  Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana , 1999, Nature.

[19]  C. Webber,et al.  A radiation hybrid map of the rat genome containing 5,255 markers , 1999, Nature Genetics.

[20]  A. Bradley,et al.  Congenital heart disease in mice deficient for the DiGeorge syndrome region , 1999, Nature.

[21]  Anton J. Enright,et al.  Estimation of Synteny Conservation and Genome Compaction Between Pufferfish (Fugu) and Human , 2000, Yeast.

[22]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[23]  M. Hattori,et al.  The DNA sequence of human chromosome 21 , 2000, Nature.

[24]  E. Mayr,et al.  Modes of Speciation , 1978, How and Why Species Multiply.

[25]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.

[26]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[27]  D. Sankoff,et al.  Parametric genome rearrangement. , 1996, Gene.

[28]  K. Lea,et al.  Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Gibbs,et al.  Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. , 1997, Genome research.

[30]  K. H. Wolfe,et al.  Updated map of duplicated regions in the yeast genome. , 1999, Gene.

[31]  G Elgar,et al.  Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. , 1999, Genome research.

[32]  William C. Nierman,et al.  Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761-768 , 1999 .

[33]  M. Schartl,et al.  300 million years of conserved synteny between chicken Z and human chromosome 9 , 1999, Nature Genetics.

[34]  Han,et al.  Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region , 1999, Genome.

[35]  C. Hall,et al.  Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. , 1999, Genome.

[36]  T. Delmonte,et al.  Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence , 1996, Nature Genetics.

[37]  T. Delmonte,et al.  Erratum: Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence , 1997, Nature Genetics.

[38]  S. Brenner,et al.  Analysis of 148 kb of genomic DNA around the wnt1 locus of Fugu rubripes. , 1999, Genome research.

[39]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.