Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration.

A microfluidic double heterostructure cavity is created in a silicon planar photonic crystal waveguide by selective infiltration of a liquid crystal. The spectral evolution of the cavity resonances probed by evanescent coupling reveals that the liquid crystal evaporates, even at room temperature, despite its relatively low vapor pressure of 5 × 10(-3) Pa. We explore the infiltration and evaporation dynamics of the liquid crystal within the cavity using a Fabry-Perot model that accounts for the joint effects of liquid volume reduction and cavity length variation due to liquid evaporation. While discussing how the pattern of the infiltrated liquid can be optimized to restrict evaporation, we find that the experimental behavior is consistent with basic microfluidic relations considering the small volumes of liquids and large surface areas present in our structure.

[1]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[2]  Johann Peter Reithmaier,et al.  Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals , 2003 .

[3]  V Zabelin,et al.  Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation. , 2006, Optics letters.

[4]  P. Etchegoin,et al.  Optical nonlinearities in the supercooled phase of nematic liquid crystal drops , 1999 .

[5]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[6]  S. Noda,et al.  Design of Photonic Crystal Nanocavity With $Q$-Factor of ${{\sim}10^{9}}$ , 2008, Journal of Lightwave Technology.

[7]  C Monat,et al.  Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. , 2009, Optics express.

[8]  Snjezana Tomljenovic-Hanic,et al.  Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration. , 2006, Optics express.

[9]  Miguel Holgado,et al.  Reconfiguration of microring resonators by liquid adhesion , 2008 .

[10]  Huimin Ouyang,et al.  Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. , 2005, Optics express.

[11]  Kurt Busch,et al.  Tunable two-dimensional photonic crystals using liquid crystal infiltration , 2000 .

[12]  Irving Langmuir,et al.  The Vapor Pressure of Metallic Tungsten , 1913 .

[13]  Benjamin J Eggleton,et al.  Reconfigurable microfluidic photonic crystal slab cavities. , 2008, Optics express.

[14]  Masanori Ozaki,et al.  Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal , 2001 .

[15]  M. Kamp,et al.  Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals , 2005 .

[16]  Stefan L. Schweizer,et al.  Two- and three-dimensional photonic crystals made of macroporous silicon and liquid crystals , 2003 .

[17]  Jeremy Witzens,et al.  Optically triggered Q-switched photonic crystal laser. , 2005, Optics express.

[18]  F. Karouta,et al.  Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities , 2009 .

[19]  Harald Giessen,et al.  Microfluidic photonic crystal double heterostructures , 2007 .

[20]  Benjamin J Eggleton,et al.  High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. , 2008, Optics letters.

[21]  D. Citrin,et al.  Reconfigurable multimode photonic-crystal waveguides. , 2008, Optics express.

[22]  F. Karouta,et al.  Wavelength tuning of planar photonic crystals by local processing of individual holes. , 2009, Optics express.

[23]  Seung‐Man Yang,et al.  Optofluidic integration of a photonic crystal nanolaser. , 2008, Optics express.

[24]  A. Fiore,et al.  Local infiltration of planar photonic crystals with UV-curable polymers , 2008 .

[25]  Stefan L. Schweizer,et al.  Rewritable photonic circuits , 2006 .

[26]  T. Krauss,et al.  Temperature stabilization of optofluidic photonic crystal cavities , 2009 .

[27]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[28]  B. Eggleton,et al.  Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique. , 2008, Optics express.

[29]  D. Wiersma,et al.  Tuning of photonic crystal cavities by controlled removal of locally infiltrated water , 2009 .

[30]  Steve Madden,et al.  Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes. , 2006, Optics express.

[31]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[32]  L. R. Fisher,et al.  The Kelvin equation and the capillary condensation of water , 1981, Nature.

[33]  Elbaum,et al.  How does a thin wetted film dry up? , 1994, Physical review letters.

[34]  Demetri Psaltis,et al.  Liquid-Crystal Electric Tuning of a Photonic Crystal Laser , 2004 .

[35]  Frank Nüesch,et al.  Liquid crystal infiltration of InP-based planar photonic crystals , 2006 .

[36]  A. Talneau,et al.  Optical tuning of planar photonic crystals infiltrated with organic molecules , 2007 .