Functional traits help to explain half-century long shifts in pollinator distributions

[1]  Ryszard Ochyra Nationalnyckeln till Sveriges flora och fauna , 2016 .

[2]  J. Biesmeijer,et al.  Susceptibility of pollinators to ongoing landscape changes depends on landscape history , 2015 .

[3]  Graziano Pesole,et al.  Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs) , 2015 .

[4]  Toke T. Høye,et al.  Ecological specialization matters: long‐term trends in butterfly species richness and assemblage composition depend on multiple functional traits , 2015 .

[5]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[6]  Jonathan Lenoir,et al.  Climate-related range shifts – a global multidimensional synthesis and new research directions , 2015 .

[7]  M. WallisDeVries Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy , 2014 .

[8]  Stephen Polasky,et al.  Projected land-use change impacts on ecosystem services in the United States , 2014, Proceedings of the National Academy of Sciences.

[9]  Guangcai Xu,et al.  Rapid assessment of historic, current and future habitat quality for biodiversity around UK Natura 2000 sites , 2014, Environmental Conservation.

[10]  J. Sarthou,et al.  Immature hoverflies overwinter in cultivated fields and may significantly control aphid populations in autumn , 2014 .

[11]  Ken Aho,et al.  Model selection for ecologists: the worldviews of AIC and BIC. , 2014, Ecology.

[12]  Nico Blüthgen,et al.  Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. , 2014, Ecology.

[13]  C. Field,et al.  Climate change 2014: impacts, adaptation, and vulnerability - Part B: regional aspects - Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[14]  P. V. van Bodegom,et al.  Relationships between Nutrient-Related Plant Traits and Combinations of Soil N and P Fertility Measures , 2013, PloS one.

[15]  J. Biesmeijer,et al.  Combined effects of global change pressures on animal-mediated pollination. , 2013, Trends in ecology & evolution.

[16]  Andy Purvis,et al.  Functional traits, the phylogeny of function, and ecosystem service vulnerability , 2013, Ecology and evolution.

[17]  Quentin Groom,et al.  Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants , 2013, Ecology letters.

[18]  J. Biesmeijer,et al.  Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study , 2013, PloS one.

[19]  J. Clobert,et al.  Dispersal syndromes and the use of life-histories to predict dispersal , 2013, Evolutionary applications.

[20]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[21]  N. Ryrholm,et al.  With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet , 2013, Proceedings of the Royal Society B: Biological Sciences.

[22]  S. Lavorel Plant functional effects on ecosystem services , 2013 .

[23]  T. Brereton,et al.  Habitat associations of thermophilous butterflies are reduced despite climatic warming , 2012, Global change biology.

[24]  R. Didham,et al.  Landscape moderation of biodiversity patterns and processes ‐ eight hypotheses , 2012, Biological reviews of the Cambridge Philosophical Society.

[25]  F. Jiguet,et al.  Differences in the climatic debts of birds and butterflies at a continental scale , 2012 .

[26]  R. Ohlemüller,et al.  Rapid Range Shifts of Species Associated with High Levels of Climate Warming , 2011, Science.

[27]  Alicia M. Frame,et al.  Species' traits predict phenological responses to climate change in butterflies. , 2011, Ecology.

[28]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[29]  S. Potts,et al.  Ecological and life-history traits predict bee species responses to environmental disturbances , 2010 .

[30]  A. Roques,et al.  Direct impacts of recent climate warming on insect populations. , 2010, Integrative zoology.

[31]  J. Biesmeijer,et al.  Global pollinator declines: trends, impacts and drivers. , 2010, Trends in ecology & evolution.

[32]  K. Gaston,et al.  Body size variation in insects: a macroecological perspective , 2010, Biological reviews of the Cambridge Philosophical Society.

[33]  J. Oldengarm,et al.  Landelijk Grondgebruiksbestand Nederland versie 6 (LGN6) : vervaardiging, nauwkeurigheid en gebruik , 2010 .

[34]  I. Steffan‐Dewenter,et al.  Contrasting resource-dependent responses of hoverfly richness and density to landscape structure , 2009 .

[35]  V. Wolters,et al.  Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat , 2009, Landscape Ecology.

[36]  J. Elith,et al.  Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models , 2009 .

[37]  Steven J. Phillips,et al.  Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. , 2009, Ecological applications : a publication of the Ecological Society of America.

[38]  Wilco Hazeleger,et al.  Western Europe is warming much faster than expected , 2008, 0806.0715.

[39]  J. Lobo,et al.  Threshold criteria for conversion of probability of species presence to either–or presence–absence , 2007 .

[40]  M. Aizen,et al.  Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. , 2007, Ecology letters.

[41]  F. Wäckers,et al.  Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. , 2007, Annual review of entomology.

[42]  T. Tscharntke,et al.  Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. , 2006, Ecology letters.

[43]  Michiel F. Wa Llisdevries Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling , 2006 .

[44]  Chris van Swaay,et al.  Biotope use and trends of European butterflies , 2006, Journal of Insect Conservation.

[45]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[46]  H. D. Haes,et al.  Ecological interpretation of changes in the dutch flora in the 20th century , 2005 .

[47]  Claes U Eliasson,et al.  Nationalnyckeln till Sveriges flora och fauna : Fjärilar. Dagfjärilar : (Hesperiidae - Nymphalidae) , 2005 .

[48]  M. Reemer Saproxylic hoverflies benefit by modern forest management (Diptera: Syrphidae) , 2005, Journal of Insect Conservation.

[49]  W. Knol,et al.  Historisch Grondgebruik Nederland: een landelijke reconstructie van het grondgebruik rond 1900 , 2004 .

[50]  William J. Sutherland,et al.  How effective are European agri‐environment schemes in conserving and promoting biodiversity? , 2003 .

[51]  G. V. Oldenborgh,et al.  On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century , 2003 .

[52]  T. Peeters,et al.  Bedreigde en verdwenen bijen in Nederland (Apidae s.l.) basisrapport met voorstel voor de rode lijst , 2003 .

[53]  K. Gaston,et al.  The Macroecological Perspective , 2000 .

[54]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[55]  P. Allison Multiple Regression: A Primer , 1994 .

[56]  Ruprecht Düll,et al.  Zeigerwerte von Pflanzen in Mitteleuropa , 1992 .

[57]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[58]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .