Magnetic properties of Co/Pt nanoring arrays deposited on carbon nanotubes

Multiple Co/Pt bilayers were deposited on vertically aligned carbon nanotubes on an anodic aluminum oxide template. The structural and the magnetic properties of the nanoring arrays were investigated by varying the number of Co/Pt bilayers in the ranges 3–10 in multilayers with a Ta(3.0 nm)/[Co(1.0 nm)/Pt(1.5 nm)]n/Ta(1.0 nm) structure. The thickness and diameter of the nanorings increased with increasing repeat number. Compared with Co/Pt films, the Co/Pt nanoring arrays showed a larger coercivity. However, the magnetostatic interactions between the nanorings became dominant in the reversal behavior and caused a nonsquare hysteresis loop. Giant magnetoresistance structures consisting of multiple Co/Pt bilayers and a thick Cu spacer exhibited magnetization curve that were in good agreement the summation of the moments of layers with varied bilayer repetition.