Exciton fine structure splitting and linearly polarized emission in strained transition-metal dichalcogenide monolayers

We study theoretically effects of an elastic strain on the exciton energy spectrum fine structure and optical selection rules in atom-thin crystals based on transition-metal dichalcogenides. The presence of strain breaks the chiral selection rules at the K -points of the Brillouin zone and makes optical transitions linearly polarized. The orientation of the induced linear polarization is related to the main axes of the strain tensor. Elastic strain provides an additive contribution to the exciton fine structure splitting in agreement with experimental evidence obtained from uniaxially strained WSe 2 monolayer. The applied strain also induces momentum-dependent Zeeman splitting. Depending on the strain orientation and magnitude, Dirac points with a linear dispersion can be formed in the exciton energy spectrum. We provide a symmetry analysis of the strain effects and de-velop a microscopic theory for all relevant strain-induced contributions to the exciton fine structure Hamiltonian.

[1]  M. Nestoklon,et al.  Optical transitions, exciton radiative decay, and valley coherence in lead chalcogenide quantum dots , 2022, Physical Review B.

[2]  E. Sherman,et al.  Flexural deformations and collapse of bilayer two-dimensional crystals by interlayer excitons , 2022, Physical Review B.

[3]  A. Kavokin,et al.  Spin-Selective Currents of Tamm Polaritons , 2022, Physical Review Applied.

[4]  H. Choo,et al.  Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap , 2022, Science advances.

[5]  E. Malic,et al.  Dark exciton anti-funneling in atomically thin semiconductors , 2021, Nature Communications.

[6]  Kenji Watanabe,et al.  Quasi-1D exciton channels in strain-engineered 2D materials , 2021, Science advances.

[7]  J. Shan,et al.  Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe2. , 2021, Nano letters.

[8]  C. Robert,et al.  Control of the exciton valley dynamics in atomically thin semiconductors by tailoring the environment , 2021 .

[9]  E. Ivchenko,et al.  Valley Orientation of Electrons and Excitons in Atomically Thin Transition Metal Dichalcogenide Monolayers (Brief Review) , 2021, JETP Letters.

[10]  H. Rostami,et al.  Nonlinear exciton drift in piezoelectric two-dimensional materials , 2020, Physical Review B.

[11]  E. Malic,et al.  Strain-dependent exciton diffusion in transition metal dichalcogenides , 2020, 2D Materials.

[12]  I. Avdeev,et al.  Resonant Optomechanical Tension and Crumpling of 2D Crystals , 2020 .

[13]  L. Golub,et al.  Skew Scattering and Side Jump Drive Exciton Valley Hall Effect in Two-Dimensional Crystals. , 2020, Physical review letters.

[14]  D. Englund,et al.  Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor , 2020, Optica.

[15]  S. Jaziri,et al.  Optical properties of excitons in two-dimensional transition metal dichalcogenide nanobubbles. , 2020, The Journal of chemical physics.

[16]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[17]  J. Fabian,et al.  Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides , 2019, Physical Review B.

[18]  C. Robert,et al.  Exciton valley depolarization in monolayer transition-metal dichalcogenides , 2019, Physical Review B.

[19]  D. Englund,et al.  Dynamic exciton funneling by local strain control in a monolayer semiconductor. , 2019, Nano letters.

[20]  I. Shelykh,et al.  Measurement of local optomechanical properties of a direct bandgap 2D semiconductor , 2019, APL Materials.

[21]  A. Isacsson,et al.  Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe2 Lattices. , 2019, Nano letters.

[22]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[23]  Christian Schneider,et al.  Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor , 2019, Nature Nanotechnology.

[24]  C. Robert,et al.  Control of the Exciton Radiative Lifetime in van der Waals Heterostructures. , 2019, Physical review letters.

[25]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[26]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[27]  Caofeng Pan,et al.  Progress in piezotronic and piezo-phototronic effect of 2D materials , 2018, 2D Materials.

[28]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[29]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[30]  P. Erhart,et al.  Impact of strain on the excitonic linewidth in transition metal dichalcogenides , 2018, 2D Materials.

[31]  Alexander Krasnok,et al.  Valley-Selective Response of Nanostructures Coupled to 2D Transition-Metal Dichalcogenides , 2018, Applied Sciences.

[32]  C. Robert,et al.  Observation of exciton-phonon coupling in MoSe2 monolayers , 2018, Physical Review B.

[33]  G. Burkard,et al.  Theory of strain-induced confinement in transition metal dichalcogenide monolayers , 2018, Physical Review B.

[34]  T. Heinz,et al.  Strain tuning of excitons in monolayer WSe2 , 2018, Physical Review B.

[35]  M. Rohlfing,et al.  Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors. , 2018, Nano letters.

[36]  A. Knorr,et al.  Phonon Sidebands in Monolayer Transition Metal Dichalcogenides. , 2017, Physical review letters.

[37]  M. Durnev,et al.  Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides , 2017, Physics-Uspekhi.

[38]  C. Robert,et al.  In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. , 2017, Physical review letters.

[39]  L. Golub,et al.  Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers , 2016, 1610.06780.

[40]  J. Tominaga,et al.  Two-Dimensional Transition-Metal Dichalcogenides , 2016 .

[41]  D. Basko,et al.  Exciton-phonon relaxation bottleneck and radiative decay of thermal exciton reservoir in two-dimensional materials , 2016, 1606.08213.

[42]  M. Rohlfing,et al.  Reversible uniaxial strain tuning in atomically thin WSe2 , 2016 .

[43]  C. Robert,et al.  Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers. , 2016, Physical review letters.

[44]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[45]  P. Zhou,et al.  Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress , 2016 .

[46]  F. M. Peeters,et al.  Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides , 2015 .

[47]  F. Guinea,et al.  Theory of strain in single-layer transition metal dichalcogenides , 2015, 1508.02908.

[48]  X. Marie,et al.  Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers , 2015, 1504.03911.

[49]  G. Steele,et al.  Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate , 2015, 1509.09118.

[50]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[51]  D. Solnyshkov,et al.  Polariton Z topological insulator. , 2014, Physical review letters.

[52]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review , 2014 .

[53]  X. Marie,et al.  Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers , 2014, 1407.5862.

[54]  Xiaodong Li,et al.  Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides , 2014, 1406.4569.

[55]  X. Marie,et al.  Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides , 2014, 1403.0108.

[56]  Xiaodong Xu,et al.  Bright excitons in monolayer transition metal dichalcogenides : from Dirac cones to Dirac saddle points , 2014 .

[57]  Tao Yu,et al.  Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2 , 2013, 1401.0047.

[58]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings , 2013, 1310.4089.

[59]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[60]  X. Marie,et al.  Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 , 2013, 1306.3442.

[61]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[62]  B. Gerardot,et al.  Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning , 2013, 1303.1122.

[63]  H. Dery,et al.  Transport theory of monolayer transition-metal dichalcogenides through symmetry. , 2013, Physical review letters.

[64]  B. Jonker,et al.  Valley polarization and intervalley scattering in monolayer MoS$_{2}$ , 2012 .

[65]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[66]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[67]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[68]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[69]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[70]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[71]  E. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures , 2005 .

[72]  E. Rashba,et al.  Orbital mechanisms of electron-spin manipulation by an electric field. , 2003, Physical review letters.

[73]  D. Citrin,et al.  Electrodynamical treatment of the electron-hole long-range exchange interaction in semiconductor nanocrystals , 2003 .

[74]  A. Kavokin,et al.  Fine structure of localized exciton levels in quantum wells , 1998 .

[75]  G. E. Pikus,et al.  Superlattices and Other Heterostructures , 1995 .

[76]  M. Z. Maialle,et al.  Exciton spin dynamics in quantum wells. , 1993, Physical review. B, Condensed matter.

[77]  Gourdon,et al.  Fine structure of heavy excitons in GaAs/AlAs superlattices. , 1992, Physical review. B, Condensed matter.

[78]  M. M. Denisov,et al.  Longitudinal and Transverse Excitons in Semiconductors , 1973 .

[79]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[80]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[81]  N. A. Poklonski,et al.  Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations , 2017, Journal of Electronic Materials.

[82]  E. Rashba,et al.  Symmetry of Energy Bands in Crystals of Wurtzite Type II. Symmetry of Bands with Spin-Orbit Interaction Included , 2015 .

[83]  GB(刘根宝) Liu Title Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides , 2012 .

[84]  G. E. Pikus,et al.  The mechanism of heavy and light hole mixing in GaAs/AlAs superlattices , 1994 .

[85]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[86]  G. E. Pikus,et al.  Exchange Interaction in Excitons in Semiconductors , 1971 .