Semigroups whose idempotents form a subsemigroup

We prove that every semigroup S in which the idempotents form a subsemigroup has an E-unitary cover with the same property. Furthermore, if S is E-dense or orthodox, then its cover can be chosen with the same property. Then we describe the structure of E-unitary dense semigroups. Our results generalize Fountain's results on semigroups in which the idempotents commute, and are analogous to those of Birget, Margolis and Rhodes, and of Jones and Szendrei on finite E-semigroups. ––– Nous montrons que tout semigroupe S dont les idempotents forment un sous-semigroupe admet un revetement E-unitaire avec la meme propriete. De plus, si S est E-dense ou orthodoxe, alors son revetement peut etre choisi de meme. Enfin, nous decrivons la structure des semigroupes E-unitaires denses. Nos resultats generalisent ceux de Fountain sur les semigroupes dont les idempotents commutent, et sont analogues a ceux de Birget, Margolis et Rhodes et de Jones et Szendrei sur les E-semigroupes finis. ––– Prova-se que todo o semigrupo S cujos idempotentes formam um subsemigrupo admite uma cobertura E-unitaria com a mesma propriedade. Alem disso, se S e E-denso ou regular, entao a sua cobertura pode ser escolhida como sendo do mesmo tipo. Enfim, descreve-se a estrutura dos semigrupos finitos E-unitarios densos. Estes resultados estendem os de Fountain sobre semigrupos cujos idempotentes comutam, e os de Birget, Margolis e Rhodes, e Jones e Szendrei sobre E-semigrupos finitos.

[1]  T. E. Hall,et al.  Finite semigroups with commuting idempotents , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[2]  Denis Thérien,et al.  Varieties of Finite Categories , 1986, RAIRO Theor. Informatics Appl..

[3]  N. Reilly,et al.  Congruences on regular semigroups. , 1967 .

[4]  E-unitaryR-unipotent semigroups , 1985 .

[5]  Jean-Camille Birget,et al.  Finite Semigroups Whose Idempotents Commute or Form a Subsemigroup , 1987 .

[6]  Mario Petrich,et al.  Inverse semigroups , 1985 .

[7]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[8]  Stuart W. Margolis,et al.  Inverse semigroups and varieties of finite semigroups , 1987 .

[9]  N. Reilly,et al.  E-unitary covers for inverse semigroups , 1977 .

[10]  J. Swift,et al.  Travels Into Several Remote Nations of the World by Lemuel Gulliver: First a Surgeon, and Then a Captain of Several Ships , 2011 .

[11]  Jean-Éric Pin Relational morphisms, transductions and operations on languages , 1988, Formal Properties of Finite Automata and Applications.

[12]  S. Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[13]  Semigroups whose idempotents form a subsemigroup , 1990, Bulletin of the Australian Mathematical Society.

[14]  G. Lallement Semigroups and combinatorial applications , 1979 .

[15]  E -Unitary Dense Covers of E -Dense Monoids , 1990 .

[16]  Jean-Eric Pin Formal Properties of Finite Automata and Applications , 1988, Lecture Notes in Computer Science.

[17]  D. Mcalister Groups, semilattices and inverse semigroups. II , 1974 .

[18]  Peter R. Jones,et al.  Local Varieties of Completely Regular Monoids , 1992 .

[19]  Subdirect products of E –inversive semigroups , 1990 .

[20]  Umberto Eco,et al.  Theory of Codes , 1976 .

[21]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[22]  J. E. Pin On a conjecture of Rhodes , 1989 .

[23]  Pascal Weil,et al.  Concatenation product: a survey , 1987, Formal Properties of Finite Automata and Applications.

[24]  L. O'Carroll Embedding theorems for proper inverse semigroups , 1976 .

[25]  On a pull-back diagram for orthodox semigroups , 1980 .

[26]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[27]  A new approach in the theory of orthodox semigroups , 1990 .