[18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain

[1]  N. Harada,et al.  Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[2]  Jennifer M. Coughlin,et al.  Regional brain distribution of translocator protein using [11C]DPA-713 PET in individuals infected with HIV , 2014, Journal of NeuroVirology.

[3]  Annelaure Damont,et al.  Metabolism and Quantification of [18F]DPA-714, a New TSPO Positron Emission Tomography Radioligand , 2013, Drug Metabolism and Disposition.

[4]  Philippe Hantraye,et al.  Reactive Astrocytes Overexpress TSPO and Are Detected by TSPO Positron Emission Tomography Imaging , 2012, The Journal of Neuroscience.

[5]  A. Reynolds,et al.  Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. , 2012, Nuclear medicine and biology.

[6]  F. Dollé,et al.  [18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106-selective radioligands for imaging TSPO 18 kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[7]  E. Hirsch,et al.  Neuroinflammation in Parkinson's disease. , 2012, Parkinsonism & related disorders.

[8]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[9]  Raphaël Boisgard,et al.  Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714 , 2011, Molecular Imaging and Biology.

[10]  M. Guillermier,et al.  In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects , 2010, Human molecular genetics.

[11]  Fred H. Gage,et al.  Mechanisms Underlying Inflammation in Neurodegeneration , 2010, Cell.

[12]  Annelaure Damont,et al.  Evaluation of the PBR/TSPO Radioligand [18F]DPA-714 in a Rat Model of Focal Cerebral Ischemia , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Michael Kassiou,et al.  Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. , 2009, Current medicinal chemistry.

[14]  M. James,et al.  [11C]-DPA-713 and [18F]-DPA-714 as New PET Tracers for TSPO: A Comparison with [11C]-(R)-PK11195 in a Rat Model of Herpes Encephalitis , 2009, Molecular Imaging and Biology.

[15]  Annelaure Damont,et al.  Comparative Evaluation of the Translocator Protein Radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a Rat Model of Acute Neuroinflammation , 2009, Journal of Nuclear Medicine.

[16]  B. Tavitian,et al.  Radiosynthesis of [18F]PBR111, a selective radioligand for imaging the translocator protein (18 kDa) with PET , 2008 .

[17]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  Denis Guilloteau,et al.  DPA-714, a New Translocator Protein–Specific Ligand: Synthesis, Radiofluorination, and Pharmacologic Characterization , 2008, Journal of Nuclear Medicine.

[19]  Ming-Kai Chen,et al.  Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. , 2008, Pharmacology & therapeutics.

[20]  Masahiro Fujita,et al.  Brain and whole-body imaging in nonhuman primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors , 2008, NeuroImage.

[21]  F. Fazio,et al.  Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  Tetsuya Suhara,et al.  11C-AC-5216: A Novel PET Ligand for Peripheral Benzodiazepine Receptors in the Primate Brain , 2007, Journal of Nuclear Medicine.

[23]  N. Ayache,et al.  Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain , 2007, Journal of Neuroscience Methods.

[24]  Masahiro Fujita,et al.  Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain , 2007, Synapse.

[25]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  B. Lopresti,et al.  The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: From pathology to imaging , 2006, Progress in Neurobiology.

[27]  Tony Wyss-Coray,et al.  Inflammation in Alzheimer disease: driving force, bystander or beneficial response? , 2006, Nature Medicine.

[28]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[29]  Hyun B Choi,et al.  Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum , 2005, Neurobiology of Disease.

[30]  Tetsuya Suhara,et al.  Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for pet imaging of peripheral benzodiazepine receptor in primate brain. , 2004, Journal of medicinal chemistry.

[31]  R. Töpper,et al.  Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury , 2001, Brain Research.

[32]  Jean-Francois Mangin,et al.  A structural browser for human brain mapping , 2000, NeuroImage.

[33]  Françoise Condé,et al.  Replicating Huntington's disease phenotype in experimental animals , 1999, Progress in Neurobiology.

[34]  R. Faull,et al.  Chemical and anatomical changes in the striatum and substantia nigra following quinolinic acid lesions in the striatum of the rat: a detailed time course of the cellular and GABAA receptor changes , 1999, Journal of Chemical Neuroanatomy.

[35]  R. Butterworth,et al.  Characterization of binding sites for the omega3 receptor ligands [3H]PK11195 and [3H]RO5-4864 in human brain. , 1997, European journal of pharmacology.

[36]  Elsdon Storey,et al.  Excitotoxin Lesions in Primates as a Model for Huntington's Disease: Histopathologic and Neurochemical Characterization , 1993, Experimental Neurology.

[37]  M. Peschanski,et al.  Glial changes following an excitotoxic lesion in the CNS—I. Microglia/macrophages , 1991, Neuroscience.

[38]  M. Peschanski,et al.  Glial changes following an excitotoxic lesion in the CNS—II. Astrocytes , 1991, Neuroscience.

[39]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[41]  H. Akaike A new look at the statistical model identification , 1974 .