Records of an ancient Martian magnetic field in ALH84001

[1]  J. Geissman Rock Magnetism: Fundamentals and Frontiers , 2002 .

[2]  S. Stewart,et al.  Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001 , 2002 .

[3]  S. Gilder,et al.  Novel high pressure magnetic measurements with application to magnetite , 2002 .

[4]  J. Eiler,et al.  Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis , 2002 .

[5]  John P. Wikswo,et al.  High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures , 2002 .

[6]  John P. Wikswo,et al.  Magnetic microscopy promises a leap in sensitivity and resolution , 2001 .

[7]  D. Dunlop,et al.  Magnetic properties of Kurokami pumices from Mt. Sakurajima, Japan , 2001 .

[8]  F. Guyot,et al.  Description of new shock‐induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites , 2001 .

[9]  J. Shaw,et al.  Investigating the ancient Martian magnetic field using microwaves , 2001 .

[10]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[11]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[12]  Maria T. Zuber,et al.  The crust and mantle of Mars , 2001, Nature.

[13]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[14]  H. McSween,et al.  Petrogenesis of Allan Hills 84001: Constraints from impact‐melted feldspathic and silica glasses , 2001 .

[15]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[16]  R. Egli,et al.  High‐resolution imaging using a high‐Tc superconducting quantum interference device (SQUID) magnetometer , 2000 .

[17]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[18]  F. Nimmo,et al.  Influence of early plate tectonics on the thermal evolution and magnetic field of Mars , 2000 .

[19]  A. Treiman Heterogeneity of remanent magnetism in ALH84001: petrologic constraints , 2000 .

[20]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[21]  E. Scott,et al.  Vibrational spectroscopic study of minerals in the Martian meteorite ALH84001 , 1999 .

[22]  M. R. Baer Computational modeling of heterogeneous reactive materials at the mesoscale , 1999 .

[23]  F. Ryerson,et al.  The temperature of formation of carbonate in Martian meteorite ALH84001: constraints from cation diffusion , 1999 .

[24]  D. Garrison,et al.  Argon‐39‐argon‐40 “ages” and trapped argon in Martian shergottites, Chassigny, and Allan Hills 84001 , 1999 .

[25]  L. Leshin,et al.  Olivine in Martian meteorite Allan Hills 84001: Evidence for a high‐temperature origin and implications for signs of life , 1999 .

[26]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[27]  Harry Y. McSween,et al.  An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite , 1998 .

[28]  H. Y. McSween,et al.  Epitaxial growth of nanophase magnetite in Martian meteorite Allan Hills 84001: Implications for biogenic mineralization , 1998, Meteoritics & planetary science.

[29]  A. Treiman The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.

[30]  E. Scott,et al.  Carbonates in fractures of Martian meteorite Allan Hills 84001: Petrologic evidence for impact origin , 1998, Meteoritics & planetary science.

[31]  D. Kring,et al.  Formation and relative ages of maskelynite and carbonate in ALH84001 , 1998 .

[32]  N. Nowaczyk,et al.  Imaging distribution patterns of magnetic minerals by a novel high-Tc-SQUID-based field distribution measuring system: application to Permian sediments , 1998 .

[33]  D. Collinson Magnetic properties of Martian meteorites: Implications for an ancient Martian magnetic field , 1997 .

[34]  Shirai Kotaro,et al.  ANALYSIS OF FINE STRUCTURE OF CHERT AND BIF BY MEASUREMENT OF HIGH RESOLUTION MAGNETIC FIELD AND SCANNING X-RAY ANALYZED MICROSCOPE , 1997 .

[35]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[36]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[37]  Michael E. Purucker,et al.  Conjugate gradient analysis: A new tool for studying satellite magnetic data sets , 1996 .

[38]  R. Ash,et al.  Ar-Ar chronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. , 1995, Geochimica et cosmochimica acta.

[39]  T. Ahrens,et al.  Shock compression and isentropic release of granite , 1995 .

[40]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[41]  J. Kirschvink,et al.  Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations , 1992 .

[42]  John P. Wikswo,et al.  High resolution magnetic susceptibility imaging of geological thin sections: Pilot study of a pyroclastic sample from the Bishop Tuff, California, U.S.A. , 1992 .

[43]  A. Bischoff,et al.  Shock metamorphism as a fundamental process in the evolution of planetary bodies; information from meteorites , 1992 .

[44]  L. Hood,et al.  Formation of magnetic anomalies antipodal to lunar impact basins: Two‐dimensional model calculations , 1991 .

[45]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[46]  P. Schultz,et al.  Laboratory observations of impact–generated magnetic fields , 1988, Nature.

[47]  M. Fuller,et al.  Magnetization of a dolomite bed in the Monterey Formation: Implications for diagenesis , 1988 .

[48]  S. Cisowski,et al.  NRM: IRM(S) demagnetization plots; An aid to the interpretation of natural remanent magnetization , 1988 .

[49]  S. Cisowski Magnetic studies on Shergotty and other SNC meteorites , 1986 .

[50]  D. Collinson Magnetic properties of Antarctic shergottite meteorites EETA 79001 and ALHA 77005: possible relevance to a Martian magnetic field , 1986 .

[51]  Anilesh Kumar,et al.  Source of stable remanence in chromite ores , 1984 .

[52]  D. Dunlop,et al.  Evidence for an Early Archean Geomagnetic Field: A paleomagnetic study of the Komati Formation, Barberton Greenstone Belt, South Africa , 1984 .

[53]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[54]  T. Nagata Paleomagnetism of Antarctic Achondrites (ii) , 1981 .

[55]  R. Coe,et al.  Geomagnetic paleointensities from radiocarbon‐dated lava flows on Hawaii and the question of the Pacific nondipole low , 1978 .

[56]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[57]  J. Herndon,et al.  MAGNETISM IN METEORITES , 1974 .

[58]  A. Schult Effect of pressure on the Curie temperature of titanomagnetites [(1 − x) ·Fe3O4 − x ·TiFe2O4] , 1970 .

[59]  S. Stewart,et al.  Temperatures on Mars from 40 Ar/ 39 Ar thermochronology of ALH84001 , 2002 .

[60]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[61]  R. Merrill The magnetic field of the earth , 1996 .

[62]  D. Collinson Magnetism of the Moon - a lunar core dynamo or impact magnetization? , 1993 .

[63]  William H. Press,et al.  Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .

[64]  R. Coe The Effect of Magnetic Interactions on Paleointensity Determinations by the Thelliers' Method , 1974 .