The art of building small: from molecular switches to molecular motors.

Molecular switches and motors are essential components of artificial molecular machines. In this perspective, we discuss progress in our design, synthesis, and functioning of photochemical and electrochemical switches and chemical and light-driven molecular motors. Special emphasis is given to the control of a range of functions and properties, including luminescence, self-assembly, motion, color, conductance, transport, and chirality. We will also discuss our efforts to control mechanical movement at the molecular level, a feature that is at the heart of molecular motors and machines. The anchoring of molecular motors on surfaces and molecular motors at work are discussed.

[1]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[2]  H. H. Wills,et al.  Some properties of crystals of silver chloride containing traces of copper chlorides , 1959 .

[3]  P. R. Hania,et al.  Light-driven dynamic pattern formation. , 2005, Angewandte Chemie.

[4]  R. Roelfsema,et al.  Self‐Assembly of Low‐Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates , 2000 .

[5]  K. Harris,et al.  Large amplitude light-induced motion in high elastic modulus polymer actuators , 2005 .

[6]  B. Feringa,et al.  Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface. , 2004, Journal of the American Chemical Society.

[7]  B. Feringa,et al.  Carboxylate-bridged dinuclear manganese systems - From catalases to oxidation catalysis , 2007 .

[8]  M. Querol,et al.  Photochromic Switches Incorporated in Bridging Ligands: A New Tool to Modulate Energy‐Transfer Processes , 2006 .

[9]  Binil Itty Ipe,et al.  Photochemistry of chromophore-functionalized gold nanoparticles , 2002 .

[10]  Auke Meetsma,et al.  Increased speed of rotation for the smallest light-driven molecular motor. , 2003, Journal of the American Chemical Society.

[11]  B. Feringa,et al.  Cyclohexane bis-urea compounds for the gelation of water and aqueous solutions. , 2005, Organic & biomolecular chemistry.

[12]  Auke Meetsma,et al.  Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. , 2005, Journal of the American Chemical Society.

[13]  B. Feringa,et al.  Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. , 2005, Chemical communications.

[14]  Kunihiro Ichimura,et al.  Photocontrol of liquid motion on an azobenzene monolayer , 2002 .

[15]  Auke Meetsma,et al.  Reversible three-state switching of luminescence: a new twist to electro- and photochromic behavior. , 2006, Journal of the American Chemical Society.

[16]  B. Feringa,et al.  Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. , 2007, Angewandte Chemie.

[17]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[18]  Tibor Kudernac,et al.  Oxidative electrochemical switching in dithienylcyclopentenes, Part 2: effect of substitution and asymmetry on the efficiency and direction of molecular switching and redox stability. , 2005, Chemistry.

[19]  B. Feringa,et al.  Efficient Intermolecular Charge Transport in Self-Assembled Fibers of Mono- and Bithiophene Bisurea Compounds. , 1999, Angewandte Chemie.

[20]  J. F. Stoddart,et al.  Photo-driven molecular devices. , 2007, Chemical Society reviews.

[21]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[22]  Auke Meetsma,et al.  Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. , 2006, Journal of the American Chemical Society.

[23]  B. Feringa,et al.  Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotation. , 2004, Organic & biomolecular chemistry.

[24]  G. Whitesides,et al.  Autonomous Movement and Self‐Assembly , 2002 .

[25]  Auke Meetsma,et al.  A donor-acceptor substituted molecular motor: unidirectional rotation driven by visible light. , 2003, Organic & biomolecular chemistry.

[26]  A. Heeres,et al.  Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. , 2004, Angewandte Chemie.

[27]  B. Feringa,et al.  REMARKABLE STABILIZATION OF SELF-ASSEMBLED ORGANOGELS BY POLYMERIZATION , 1997 .

[28]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[29]  Ben L. Feringa,et al.  Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.

[30]  B. Feringa,et al.  University of Groningen Design and Application of Self-Assembled Low Molecular Weight Hydrogels , 2005 .

[31]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[32]  T. Y. Tsong,et al.  Catalytic Wheel as a Brownian Motor , 2004 .

[33]  G. Bringmann,et al.  Stereoselective total synthesis of axially chiral natural products via biaryl lactones. , 2001, Accounts of chemical research.

[34]  Ben L Feringa,et al.  Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality , 2004, Science.

[35]  Tibor Kudernac,et al.  Oxidative electrochemical switching in dithienylcyclopentenes, part 1: effect of electronic perturbation on the efficiency and direction of molecular switching. , 2005, Chemistry.

[36]  Dominik Horinek,et al.  Artificial molecular rotors. , 2005, Chemical reviews.

[37]  B. Feringa,et al.  Syntheses of Dithienylcyclopentene Optical Molecular Switches , 2003 .

[38]  Ben L. Feringa,et al.  Chiroptical molecular switches , 1996 .

[39]  Auke Meetsma,et al.  Acceleration of a nanomotor: electronic control of the rotary speed of a light-driven molecular rotor. , 2005, Journal of the American Chemical Society.

[40]  T. Mallouk,et al.  Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[41]  Ben L Feringa,et al.  Amplification of chirality in liquid crystals. , 2006, Organic & biomolecular chemistry.

[42]  Ben L Feringa,et al.  Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. , 2006, Angewandte Chemie.

[43]  B. Feringa,et al.  Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions. , 2001, Angewandte Chemie.

[44]  R. Guglielmetti,et al.  Organic Photochromic and Thermochromic Compounds , 2002 .

[45]  Gregor Neuert,et al.  Single Molecule Force Spectroscopy of Azobenzene Polymers: Switching Elasticity of Single Photochromic Macromolecules , 2003 .

[46]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[47]  Ben L. Feringa,et al.  Toward a switchable molecular rotor. Unexpected dynamic behavior of functionalized overcrowded alkenes , 1997 .

[48]  Dirk Trauner,et al.  Engineering light-gated ion channels. , 2006, Biochemistry.

[49]  B. Feringa,et al.  A chiroptical molecular switch with perfect stereocontrol. , 2004, Chemical communications.

[50]  Auke Meetsma,et al.  Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. , 2005, Organic & biomolecular chemistry.

[51]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[52]  E. W. Meijer,et al.  CHIROPTICAL MOLECULAR SWITCH , 1991 .

[53]  Auke Meetsma,et al.  Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. , 2002, Journal of the American Chemical Society.

[54]  B. Feringa,et al.  Two-stage enzyme mediated drug release from LMWG hydrogels. , 2005, Organic & biomolecular chemistry.

[55]  T. R. Kelly,et al.  Progress toward a rationally designed, chemically powered rotary molecular motor. , 2007, Journal of the American Chemical Society.

[56]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[57]  Yanyan Cao,et al.  Catalytic nanomotors: autonomous movement of striped nanorods. , 2004, Journal of the American Chemical Society.

[58]  Michael M. Pollard,et al.  A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy , 2005, Science.

[59]  G M Whitesides,et al.  The once and future nanomachine. , 2001, Scientific American.

[60]  B. Feringa,et al.  Reversible full-range color control of a cholesteric liquid-crystalline film by using a molecular motor. , 2006, Chemistry, an Asian journal.

[61]  Tibor Kudernac,et al.  Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles. , 2006, Chemical communications.

[62]  B. Feringa,et al.  CHIROPTICAL SWITCHING BETWEEN LIQUID CRYSTALLINE PHASES , 1995 .

[63]  H. Wynberg,et al.  Torsionally Distorted Olefins. Resolution of cis- and trans-4,4'-Bi-1,1',2,2',3,3'-hexahydrophenanthrylidene , 1977 .

[64]  Ben L Feringa,et al.  Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  B. Feringa,et al.  Dual-mode photoswitching of luminescence , 1995 .

[66]  R. Astumian,et al.  Making molecules into motors. , 2001, Scientific American.

[67]  S. Sukharev,et al.  Gain-of-function Mutations Reveal Expanded Intermediate States and a Sequential Action of Two Gates in MscL , 2005, The Journal of general physiology.

[68]  T. Fyles,et al.  Synthetic ion channels in bilayer membranes. , 2007, Chemical Society reviews.

[69]  Yoshihisa Inoue Asymmetric photochemical reactions in solution , 1992 .

[70]  Nathalie Katsonis,et al.  Reversible Conductance Switching of Single Diarylethenes on a Gold Surface , 2006 .

[71]  B. Feringa,et al.  Polymer-bound chiroptical molecular switches; Photochemical modification of the chirality of thin films , 1996 .

[72]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[73]  M. Ikeda,et al.  Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. , 2001, Accounts of chemical research.

[74]  Nathalie Katsonis,et al.  Rotational reorganization of doped cholesteric liquid crystalline films. , 2006, Journal of the American Chemical Society.

[75]  Jean-Pierre Launay,et al.  Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge: An Intervalence Electron Transfer Switching “On” and “Off” , 2000 .

[76]  Auke Meetsma,et al.  Catalytic molecular motors: fuelling autonomous movement by a surface bound synthetic manganese catalase. , 2005, Chemical communications.

[77]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[78]  S. Vyskocil,et al.  Non-symmetrically substituted 1,1'-binaphthyls in enantioselective catalysis. , 2003, Chemical reviews.

[79]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[80]  Richard A. van Delden,et al.  Controlling the Color of Cholesteric Liquid‐Crystalline Films by Photoirradiation of a Chiroptical Molecular Switch Used as Dopant , 2003 .

[81]  Viola Vogel,et al.  Powering nanodevices with biomolecular motors. , 2004, Chemistry.

[82]  B. Feringa,et al.  Sterically overcrowded alkenes; a stereospecific photochemical and thermal isomerization of a benzoannulated bithioxanthylidene , 1993 .

[83]  D C Rees,et al.  Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. , 1998, Science.

[84]  B. Feringa,et al.  A Highly Stereoselective Optical Switching Process Based on Donor–Acceptor Substituted Dissymmetric Alkenes , 1995 .

[85]  H. Robert Guy,et al.  The gating mechanism of the large mechanosensitive channel MscL , 2001, Nature.

[86]  Walter F Paxton,et al.  Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. , 2005, Angewandte Chemie.

[87]  B. Branchaud,et al.  Synthesis and characterization of a functionalized chiral biaryl capable of exhibiting unidirectional bond rotation , 2004 .

[88]  Auke Meetsma,et al.  In control of the speed of rotation in molecular motors. Unexpected retardation of rotary motion. , 2002, Chemical communications.

[89]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[90]  S. J. van der Molen,et al.  One-way optoelectronic switching of photochromic molecules on gold. , 2003, Physical review letters.

[91]  B. Feringa,et al.  Photo- and electro-chromism of diarylethene modified ITO electrodes-towards molecular based read-write-erase information storage. , 2006, Chemical communications.

[92]  B. Branchaud,et al.  180° Unidirectional Bond Rotation in a Biaryl Lactone Artificial Molecular Motor Prototype , 2006 .

[93]  B. Feringa,et al.  Remarkable solvent-dependent excited-state chirality: a molecular modulator of circularly polarized luminescence. , 2003, Journal of the American Chemical Society.

[94]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[95]  David Bebbington,et al.  A Molecular Brake , 1994 .

[96]  R. W. Fessenden,et al.  SUDDEN POLARIZATION IN THE TWISTED, PHANTOM STATE OF TETRAPHENYLETHYLENE DETECTED BY TIME-RESOLVED MICROWAVE CONDUCTIVITY , 1993 .

[97]  B. Feringa,et al.  Dynamic chiral selection and amplification using photoresponsive organogelators. , 2005, Journal of the American Chemical Society.

[98]  Kenji Matsuda,et al.  Photoswitching of the magnetic interaction between a copper(II) ion and a nitroxide radical by using a photochromic spin coupler. , 2003, Chemistry.

[99]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[100]  S. J. van der Molen,et al.  Stochastic and photochromic switching of diarylethenes studied by scanning tunnelling microscopy , 2006 .

[101]  M. Besnard,et al.  Release of Thioredoxin via the Mechanosensitive Channel MscL during Osmotic Downshock of Escherichia coli Cells* , 1998, The Journal of Biological Chemistry.

[102]  Hiizu Iwamura,et al.  Stereochemical consequences of dynamic gearing , 1988 .

[103]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[104]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[105]  Chih-Ming Ho,et al.  A nanomechanical device based on linear molecular motors , 2004 .

[106]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.