Absolute continuity, supports and idempotent splitting in categorical probability

Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accomodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental resutlts such as the Hewitt-Savage 0/1 Law, the De Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.

[1]  Masashi Sugiyama,et al.  A Category-theoretical Meta-analysis of Definitions of Disentanglement , 2023, ICML.

[2]  Toby St Clere Smithe,et al.  The Compositional Structure of Bayesian Inference , 2023, arXiv.org.

[3]  Paolo Perrone Markov Categories and Entropy , 2022, ArXiv.

[4]  Nicholas Gauguin Houghton-Larsen,et al.  Dilations and information flow axioms in categorical probability , 2022, ArXiv.

[5]  Jules Hedges,et al.  Dependent Bayesian Lenses: Categories of Bidirectional Markov Kernels with Canonical Bayesian Inversion , 2022, ArXiv.

[6]  Sean K. Moss,et al.  A category-theoretic proof of the ergodic decomposition theorem , 2022, Ergodic Theory and Dynamical Systems.

[7]  T. Fritz,et al.  The d-separation criterion in Categorical Probability , 2022, J. Mach. Learn. Res..

[8]  Sean K. Moss,et al.  Probability monads with submonads of deterministic states , 2022, LICS.

[9]  Elena Di Lavore,et al.  Monoidal Streams for Dataflow Programming , 2022, LICS.

[10]  T. Fritz,et al.  De Finetti's Theorem in Categorical Probability , 2021, ArXiv.

[11]  Tat Dat Tran,et al.  Probabilistic morphisms and Bayesian nonparametrics , 2021, The European Physical Journal Plus.

[12]  Dario Stein,et al.  Compositional Semantics for Probabilistic Programs with Exact Conditioning , 2021, 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[13]  T. Fritz,et al.  Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability , 2020, Theor. Comput. Sci..

[14]  Evan Patterson,et al.  The algebra and machine representation of statistical models , 2020, 2006.08945.

[15]  Arthur J. Parzygnat Inverses, disintegrations, and Bayesian inversion in quantum Markov categories , 2020, 2001.08375.

[16]  T. Fritz,et al.  Infinite products and zero-one laws in categorical probability , 2019, Compositionality.

[17]  T. Fritz A synthetic approach to Markov kernels, conditional independence, and theorems on sufficient statistics , 2019, ArXiv.

[18]  Tobias Fritz,et al.  Probability, valuations, hyperspace: Three monads on Top and the support as a morphism , 2019, Math. Struct. Comput. Sci..

[19]  N. Fieller Inverses , 2018, Basics of Matrix Algebra for Statistics with R.

[20]  Tobias Fritz,et al.  Bimonoidal Structure of Probability Monads , 2018, MFPS.

[21]  Bart Jacobs,et al.  Disintegration and Bayesian inversion via string diagrams , 2017, Mathematical Structures in Computer Science.

[22]  Arthur J. Parzygnat Discrete probabilistic and algebraic dynamics: a stochastic commutative Gelfand-Naimark Theorem , 2017, 1708.00091.

[23]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[24]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[25]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[26]  T. Banakh The topology of spaces of probability measures, I , 1997, 1112.6161.

[27]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[28]  M. Billik Idempotent Reynolds operators , 1967 .

[29]  S. Moy Characterizations of conditional expectation as a transformation on function spaces. , 1954 .

[30]  D. Blackwell Idempotent Markoff Chains , 1942 .

[31]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[32]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[33]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[34]  Tero Harju,et al.  Ordered Sets , 2001 .

[35]  T O Banakh,et al.  Topology of spaces of probability measures , 1997 .

[36]  Fabio Gadducci,et al.  On The Algebraic Approach To Concurrent Term Rewriting , 1996 .

[37]  R. DeVille,et al.  Smoothness and renormings in Banach spaces , 1993 .

[38]  Francis Borceux,et al.  Cauchy completion in category theory , 1986 .

[39]  S. Benson,et al.  Chemical Kinetics , 2021, Fuel Effects on Operability of Aircraft Gas Turbine Combustors.

[40]  A. Pełczyński Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions , 1968 .

[41]  I. Miyazaki,et al.  AND T , 2022 .