Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction

[1]  O. Lame,et al.  Mechanical and physical characterization of polyoxymethylene processed by high‐velocity compaction , 2007 .

[2]  G. Höhne,et al.  The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics , 2007 .

[3]  B. Azhdar,et al.  Development of a High-Velocity Compaction process for polymer powders , 2005 .

[4]  F. Mcgarry,et al.  Processing of ultra-high molecular weight polyethylene by hot isostatic pressing, and the effect of processing parameters on its microstructure , 2004 .

[5]  L. Govaert,et al.  Intrinsic Deformation Behavior of Semicrystalline Polymers , 2004 .

[6]  R. Pitchumani,et al.  A micromechanical model for the elastic properties of semicrystalline thermoplastic polymers , 2004 .

[7]  S. Elkoun,et al.  Experimental characterization of the volume strain of poly(vinylidene fluoride) in the region of homogeneous plastic deformation , 2002 .

[8]  John M. Kelly ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE* , 2002 .

[9]  Y. Kong,et al.  The measurement of the crystallinity of polymers by DSC , 2002 .

[10]  I. Ward,et al.  The morphology of nascent and moulded ultra-high molecular weight polyethylene. Insights from solid-state NMR, nitric acid etching, GPC and DSC , 2000 .

[11]  M. Doyle,et al.  On the effect of crystallinity on the elastic properties of semicrystalline polyethylene , 2000 .

[12]  N. Brooks,et al.  Temperature and stem length dependence of the yield stress of polyethylene , 2000 .

[13]  A. Edidin,et al.  Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. , 1999, Biomaterials.

[14]  F. Shen,et al.  Morphology of chemically crosslinked ultrahigh molecular weight polyethylene. , 1998, Journal of biomedical materials research.

[15]  K. Ramani,et al.  Analysis of the effect of pressure on compression moulding of UHMWPE , 1998, Journal of materials science. Materials in medicine.

[16]  R. Phillips Morphology and melting behavior of nascent ultra‐high molecular weight polyethylene , 1998 .

[17]  D. Farrar,et al.  The microstructure of ultra-high molecular weight polyethylene used in total joint replacements. , 1997, Biomaterials.

[18]  R. Seguela,et al.  Tensile Yield of Polyethylene and Related Copolymers: Mechanical and Structural Evidences of Two Thermally Activated Processes , 1997 .

[19]  J. E. Mark,et al.  Physical Properties of Polymers: Index , 2004 .

[20]  P. Gao,et al.  Effects of compaction pressure on cohesive strength and chain mobility of low-temperature compacted nascent UHMWPE , 1996 .

[21]  D. Gilson,et al.  Variable-Temperature Solid-State 13C NMR Studies of Nascent and Melt-Crystallized Polyethylene , 1995 .

[22]  A. Peacock,et al.  Tensile Properties of Crystalline Polymers: Linear Polyethylene , 1994 .

[23]  J. Janzen Elastic moduli of semicrystalline polyethylenes compared with theoretical micromechanical models for composites , 1992 .

[24]  B. Crist,et al.  Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress , 1989 .

[25]  R. Salovey,et al.  Melting of ultrahigh molecular weight polyethylene , 1987 .

[26]  P. Geil,et al.  Cold compaction molding and sintering of ultra high molecular weight polyethylene , 1980 .

[27]  S. K. Garkhail Easily processable ultra high molecular weight polyethylene with narrow molecular weight distribution , 2005 .

[28]  E. Oleinik Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels , 2003 .

[29]  G. Boiteux,et al.  Synthesis and properties of polyurethanes based on polyolefine: 1. Rigid polyurethanes and amorphous segmented polyurethanes prepared in polar solvents under homogeneous conditions , 1991 .

[30]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[31]  W. Bragg,et al.  The Crystalline State , 1925 .