The range of once‐reinforced random walk in one dimension

We study once-reinforced random walk (ORRW) on $\mathbb Z$. For this model, we derive limit results on all moments of its range using Tauberian theory.

[1]  V. Sidoravicius,et al.  Submitted to the Annals of Probability PHASE TRANSITION FOR THE ONCE-REINFORCED RANDOM WALK ON Z D-LIKE TREES , 2017 .

[2]  Once edge-reinforced random walk on a tree , 2002 .

[3]  C. S. Tapiero,et al.  Moments of an amplitude process in a random walk and approximations : computations and applications , 1995 .

[4]  Moments in the duration of play , 1997 .

[5]  T. Voigtmann,et al.  Clearing out a maze: A model of chemotactic motion in porous media. , 2017, The Journal of chemical physics.

[6]  W. Feller The Asymptotic Distribution of the Range of Sums of Independent Random Variables , 1951 .

[7]  B. Davis Weak limits of perturbed random walks and the equation $Y_t = B_t + \alpha\sup\{Y_s\colon s \leq t\}+\beta\inf\{Y\sb s\colon s \leq t\}$ , 1996 .

[8]  A Once edge-reinforced random walk on a Galton–Watson tree is transient , 2005 .

[9]  A survey of random processes with reinforcement , 2007, math/0610076.

[10]  M. Perman,et al.  Perturbed Brownian motions , 1997 .

[11]  Parkpoom Phetpradap,et al.  Intersections of random walks , 2011 .

[12]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[13]  1994 ' True ' Self-Avoiding Walks with Generalized Bond Repulsion on Z , 2005 .

[14]  B. Davis,et al.  Reinforced random walk , 1990 .

[15]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[16]  M. Yor,et al.  Beta Variables as Times Spent in [0, ∞[ By Certain Perturbed Brownian Motions , 1998 .

[17]  J. Korevaar Tauberian Theory: A Century of Developments , 2010 .

[18]  T. Sellke Recurrence of Reinforced Random Walk on a Ladder , 2006 .

[19]  Bálint Tóth,et al.  ‘True’ self-avoiding walks with generalized bond repulsion on ℤ , 1994 .