DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS,

Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A ≈ 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.

[1]  S. Cristallo,et al.  The s-Process in Low Metallicity Stars. II. Interpretation of High-Resolution Spectroscopic Observations with AGB models , 2011, 1108.0500.

[2]  C. Proffitt,et al.  Very High Resolution Ultraviolet Spectroscopy of a Chemically Peculiar Star: Results of the χ Lupi Pathfinder Project , 1999 .

[3]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[4]  GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003, astro-ph/0310189.

[5]  V. Hill,et al.  XV. Third-peak r-process element and actinide abundances in the uranium-rich star CS31082-001 , 2011 .

[6]  S. Shectman,et al.  CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM, , 2010, 1001.1745.

[7]  P. A. Seeger,et al.  Nucleosynthesis of Heavy Elements by Neutron Capture , 1965 .

[8]  G. Wasserburg,et al.  Abundances of Actinides and Short-lived Nonactinides in the Interstellar Medium: Diverse Supernova Sources for the r-Processes , 1996 .

[9]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[10]  G. Wasserburg,et al.  Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy , 2008, 0807.0809.

[11]  M. Eracleous,et al.  The Astrophysical Journal Letters Variable UV Absorption in the Spectrum of MRC 2251–178 1 , 2001 .

[12]  A. Cameron The heavy element yields of neutron capture nucleosynthesis , 1982 .

[13]  F. Käppeler,et al.  s-process nucleosynthesis-nuclear physics and the classical model , 1989 .

[14]  Christopher Sneden,et al.  Hubble Space Telescope Observations of Neutron-Capture Elements in Very Metal Poor Stars , 1998 .

[15]  A. Ubelis,et al.  Transition Probability Measurements of Te I Spectral Lines by Methods of Emission and Absorption of Radiation , 1983 .

[16]  E. Pellegrini,et al.  s-Process Abundances in Planetary Nebulae , 2006, astro-ph/0612101.

[17]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005, astro-ph/0502591.

[18]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements , 2000 .

[19]  R. Peterson THE EXTREME OVERABUNDANCE OF MOLYBDENUM IN TWO METAL-POOR STARS , 2011, 1108.3542.

[20]  E. A. Den Hartog,et al.  NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS , 2009, 0903.1623.

[21]  J. Simmerer,et al.  THE UBIQUITY OF THE RAPID NEUTRON-CAPTURE PROCESS , 2010, 1009.4496.

[22]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[23]  B. A. Brown,et al.  N=82 shell quenching of the classical r-process "waiting-point" nucleus 130Cd. , 2003, Physical review letters.

[24]  C. Sneden,et al.  First Detection of Platinum, Osmium, and Lead in a Metal-Poor Halo Star: HD 126238 , 1996 .

[25]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[26]  K. Kratz,et al.  CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE , 2010, 1002.2346.

[27]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[28]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[29]  J. Lawler,et al.  NEW ABUNDANCE DETERMINATIONS OF CADMIUM, LUTETIUM, AND OSMIUM IN THE r-PROCESS ENRICHED STAR BD +17 3248, , 2010, 1003.4522.

[30]  V. Gopka,et al.  Abundances of rhenium and tellurium in procyon , 1996 .

[31]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[32]  Mark Clampin,et al.  The On-Orbit Performance of the Space Telescope Imaging Spectrograph , 1998 .

[33]  J. Verges,et al.  Observation et Classification du Spectre d'Arc du Tellure (Te I) entre 3 678 et 11 761 cm-1 , 1975 .

[34]  S. Svanberg,et al.  Oscillator strengths for resonance transitions in neutral selenium and tellurium derived from time-resolved laser spectroscopy , 1992 .

[35]  K. Kratz,et al.  THE END OF NUCLEOSYNTHESIS: PRODUCTION OF LEAD AND THORIUM IN THE EARLY GALAXY , 2009, 0904.3105.

[36]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.

[37]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248* , 2002, astro-ph/0202429.

[38]  K. Kratz,et al.  Explorations of the r-Processes: Comparisons between Calculations and Observations of Low-Metallicity Stars , 2007, astro-ph/0703091.

[39]  É. Biémont,et al.  HD 65949: Rosetta stone or red herring , 2010, 1002.2945.

[40]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[41]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .