Land-use futures in the shared socio-economic pathways

[1]  Wolfgang Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[2]  George C. Hurtt,et al.  The Land Use Model Intercomparison Project (LUMIP): Rationale and experimental design , 2016 .

[3]  Stephen R. Carpenter,et al.  Biodiversity and ecosystem services require IPBES to take novel approach to scenarios , 2016, Sustainability Science.

[4]  Benjamin Leon Bodirsky,et al.  Global Food Demand Scenarios for the 21st Century , 2015, PloS one.

[5]  Christoph Schmitz,et al.  Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture , 2015 .

[6]  J.C.M. van Meijl,et al.  Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios , 2015 .

[7]  Alessandro Flammini,et al.  The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012 , 2015, Global change biology.

[8]  James A. Edmonds,et al.  Accounting for radiative forcing from albedo change in future global land-use scenarios , 2015, Climatic Change.

[9]  Benjamin Leon Bodirsky,et al.  Land-use protection for climate change mitigation , 2014 .

[10]  Kiyoshi Takahashi,et al.  Land use representation in a global CGE model for long-term simulation: CET vs. logit functions , 2014, Food Security.

[11]  James A. Edmonds,et al.  ECONOMIC AND PHYSICAL MODELING OF LAND USE IN GCAM 3.0 AND AN APPLICATION TO AGRICULTURAL PRODUCTIVITY, LAND, AND TERRESTRIAL CARBON , 2014 .

[12]  D. Vuuren,et al.  Integrated Assessment of Global Environmental Change with IMAGE 3.0 : Model description and policy applications , 2014 .

[13]  Christoph Schmitz,et al.  Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution , 2014, Nature Communications.

[14]  Benjamin Leon Bodirsky,et al.  Investigating afforestation and bioenergy CCS as climate change mitigation strategies , 2014, Environmental Research Letters.

[15]  Andrew E. Suyker,et al.  Land management and land-cover change have impacts of similar magnitude on surface temperature , 2014 .

[16]  Elmar Kriegler,et al.  Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options , 2014, Climatic Change.

[17]  E. Schmid,et al.  Climate change mitigation through livestock system transitions , 2014, Proceedings of the National Academy of Sciences.

[18]  Thomas J. Wilbanks,et al.  SSPs from an impact and adaptation perspective , 2014, Climatic Change.

[19]  Keywan Riahi,et al.  A new scenario framework for Climate Change Research: scenario matrix architecture , 2014, Climatic Change.

[20]  P. Kyle,et al.  Climate change effects on agriculture: Economic responses to biophysical shocks , 2013, Proceedings of the National Academy of Sciences.

[21]  N. H. Ravindranath,et al.  How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? , 2013, Global change biology.

[22]  Thomas Hertel,et al.  Climate change mitigation policies and poverty in developing countries , 2013 .

[23]  Detlef P. van Vuuren,et al.  Scenarios in Global Environmental Assessments: Key characteristics and lessons for future use , 2012 .

[24]  Brian C. O'Neill,et al.  The Need for and Use of Socio-Economic Scenarios for Climate Change Analysis , 2012 .

[25]  Keywan Riahi,et al.  Chapter 17 - Energy Pathways for Sustainable Development , 2012 .

[26]  N. Ramankutty,et al.  Closing yield gaps through nutrient and water management , 2012, Nature.

[27]  J. Bruinsma,et al.  World agriculture towards 2030/2050: the 2012 revision , 2012 .

[28]  Christoph Schmitz,et al.  Trading more food: Implications for land use, greenhouse gas emissions, and the food system , 2012 .

[29]  D. Tilman,et al.  Global food demand and the sustainable intensification of agriculture , 2011, Proceedings of the National Academy of Sciences.

[30]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[31]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[32]  Dieter Gerten,et al.  The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system , 2011 .

[33]  R. B. Jackson,et al.  Biophysical considerations in forestry for climate protection , 2011 .

[34]  R. Westaway,et al.  Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks , 2011 .

[35]  E. Lambin,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Global land use change, economic globalization, and the looming land scarcity , 2011 .

[36]  H. Steinfeld,et al.  Livestock production and the global environment: Consume less or produce better? , 2010, Proceedings of the National Academy of Sciences.

[37]  Michael Obersteiner,et al.  Competition for land , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  H. Lotze-Campen,et al.  Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production , 2010 .

[39]  David B Lobell,et al.  Greenhouse gas mitigation by agricultural intensification , 2010, Proceedings of the National Academy of Sciences.

[40]  R. DeFries,et al.  Agricultural intensification and changes in cultivated areas, 1970–2005 , 2009, Proceedings of the National Academy of Sciences.

[41]  Bas Eickhout,et al.  The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions , 2009 .

[42]  C. Müller,et al.  Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study , 2009 .

[43]  S. Carpenter,et al.  Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment , 2009, Proceedings of the National Academy of Sciences.

[44]  Bas Eickhout,et al.  Climate benefits of changing diet , 2009 .

[45]  Christopher B. Field,et al.  Protecting climate with forests , 2008 .

[46]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[47]  Peter Kareiva,et al.  Domesticated Nature: Shaping Landscapes and Ecosystems for Human Welfare , 2007, Science.

[48]  Ian McCallum,et al.  Predicting the deforestation-trend under different carbon-prices , 2006, Carbon balance and management.

[49]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[50]  K. Riahi,et al.  Managing Climate Risk , 2001, Science.

[51]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[52]  K. Calvin,et al.  Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century , 2017 .

[53]  C. Müller,et al.  Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm , 2017 .

[54]  M. Strubegger,et al.  Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives , 2017 .

[55]  K. Riahi,et al.  The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century , 2017 .

[56]  Jean Chateau,et al.  Long-term economic growth projections in the Shared Socioeconomic Pathways , 2017 .

[57]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[58]  T. Hertel,et al.  Climate Change Impacts in Agriculture , 2016 .

[59]  John M. Antle,et al.  Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation , 2015 .

[60]  Christoph Schmitz,et al.  Forecasting technological change in agriculture—An endogenous implementation in a global land use model , 2014 .

[61]  P. Kyle,et al.  Why do global long‐term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison , 2014 .

[62]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared climate policy assumptions , 2014, Climatic Change.

[63]  Tomoko Hasegawa,et al.  The future of food demand: understanding differences in global economic models , 2014 .

[64]  Christoph Schmitz,et al.  Comparing supply-side specifications in models of global agriculture and the food system , 2014 .

[65]  P. Kyle,et al.  Land‐use change trajectories up to 2050: insights from a global agro‐economic model comparison , 2014 .

[66]  Gordon B. Bonan,et al.  Benefits of Forests Forests and Climate Change: Forcings, Feedbacks, and the Climate , 2014 .

[67]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways , 2013, Climatic Change.

[68]  J. Edmonds,et al.  A new scenario framework for climate change research: background, process, and future directions , 2013, Climatic Change.

[69]  Michael Obersteiner,et al.  Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions , 2013 .

[70]  Keywan Riahi,et al.  Energy Pathways for Sustainable Development , 2012 .

[71]  Costas P. Pappis,et al.  Climate Change Mitigation Policies , 2011 .