Oxidation-reduction properties of the electron acceptors of Photosystem II. II. Redox titration at various pH values of the flash-induced formation of C550 in Chlamydomonas Photosystem II particles lacking the secondary quinone electron acceptor

[1]  J. Lavergne Mode of action of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Evidence that the inhibitor competes with plastoquinone for binding to a common site on the acceptor side of Photosystem II , 1982 .

[2]  B. Diner,et al.  Investigation of the iron components in photosystem II by Mössbauer spectroscopy , 1982 .

[3]  J. Nugent,et al.  Direct determination of the oxidation reduction potential of the iron—quinone electron acceptor (Q) in photosystem II in Chlamydomonas reinhardtii , 1982 .

[4]  John A. Nairn,et al.  Picosecond fluorescence kinetics and energy transfer in chloroplasts and algae , 1982 .

[5]  D. Bendall,et al.  Does the acceptor Q2 fulfil an indispensable function in the primary reactions of photosystem II? , 1981 .

[6]  B. Diner,et al.  Direct detection of the electron acceptor of photosystem II , 1981 .

[7]  C. Wraight Oxidation‐Reduction Physical Chemistry of the Acceptor Quinone Complex in Bacterial Photosynthetic Reaction Centers: Evidence for a New Model of Herbicide Activity , 1981 .

[8]  V. Shuvalov,et al.  Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential , 1980 .

[9]  B. Diner,et al.  Isolation of highly active photosystem II particles from a mutant of Chlamydomonas reinhardtii. , 1980, European journal of biochemistry.

[10]  B. Kê,et al.  EPR properties of an intermediary electron acceptor (pheophytin) in photosystem‐II reaction centers at cryogenic temperatures , 1980 .

[11]  B. Kok,et al.  Redox titration of electron acceptor Q and the plastoquinone pool in photosystem II. , 1979, Biochimica et biophysica acta.

[12]  J. Barber,et al.  On the function of the fluorescence quenchers in chloroplasts and their relation to the primary electron acceptor of photosystem II. , 1979, Archives of biochemistry and biophysics.

[13]  E. Croze,et al.  Characterization of two quenchers of chlorophyll fluorescence with different midpoint oxidation-reduction potentials in chloroplasts. , 1979, Biochimica et biophysica acta.

[14]  M. S. Davis,et al.  Anion radicals of pheophytin and chlorophyll A: their role in the primary charge separations of plant photosynthesis , 1978 .

[15]  V. Shuvalov,et al.  Reduction of pheophytin in the primary light reaction of photosystem II , 1977, FEBS letters.

[16]  D. Knaff The effect of pH on the midpoint oxidation‐reduction potentials of components associated with plant photosystem II , 1975 .

[17]  D. Knaff The effect of o-phenanthroline on the midpoint potential of the primary electron acceptor of photosystem II. , 1975, Biochimica et biophysica acta.

[18]  B. Kok,et al.  Proton evolution associated with the photooxidation of water in photosynthesis. , 1974, Biochimica et biophysica acta.

[19]  H. V. Gorkom,et al.  Identification of the reduced primary electron acceptor of Photosystem II as a bound semiquinone anion , 1974 .

[20]  J. J. Tamminga,et al.  Primary reactions, plastoquinone and fluorescence yield in subchloroplast fragments prepared with deoxycholate. , 1974, Biochimica et biophysica acta.

[21]  P. Dutton,et al.  Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor. , 1973, Biochimica et biophysica acta.

[22]  G. Feher SOME CHEMICAL AND PHYSICAL PROPERTIES OF A BACTERIAL REACTION CENTER PARTICLE AND ITS PRIMARY PHOTOCHEMICAL REACTANTS * , 1971, Photochemistry and photobiology.

[23]  W. L. Butler,et al.  The relationship between Q, C-550 and cytochrome b 559 in photoreactions at −196° in chloroplasts , 1971 .

[24]  W. Cramer,et al.  Potentiometric titration of the fluorescence yield of spinach chloroplasts. , 1969, Biochimica et biophysica acta.