Modelling of zirconium growth under irradiation and annealing conditions

[1]  M. Preuss,et al.  Dislocation Density Transients and Saturation in Irradiated Zirconium , 2023, SSRN Electronic Journal.

[2]  L. Gélébart,et al.  Polycrystalline simulations of in-reactor deformation of recrystallized Zircaloy-4 tubes: Fast Fourier Transform computations and mean-field self-consistent model , 2022, International Journal of Plasticity.

[3]  P. Barbéris,et al.  Zirconium-Applied Anisotropic Cluster Dynamics for Irradiation-Induced Defect Modeling in Presence of Hydrogen , 2021, Zirconium in the Nuclear Industry: 19th International Symposium.

[4]  A. Addad,et al.  Dislocation electron tomography: A technique to characterize the dislocation microstructure evolution in zirconium alloys under irradiation , 2021, Acta Materialia.

[5]  G. Po,et al.  Plasticity of irradiated materials at the nano and micro-scales , 2021 .

[6]  I. Beyerlein,et al.  Two-dimensional vacancy platelets as precursors for basal dislocation loops in hexagonal zirconium , 2020, Nature Communications.

[7]  N. Ghoniem,et al.  Cluster dynamics modeling of irradiation growth in single crystal Zr , 2020 .

[8]  C. Becquart,et al.  A phase field model for dislocation climb under irradiation: Formalism and applications to pure bcc iron and ferritic alloys , 2020 .

[9]  C. Domain,et al.  Phase-field calculations of sink strength in Al, Ni, and Fe: A detailed study of elastic effects , 2020 .

[10]  C. Domain,et al.  Influence of vacancy diffusional anisotropy: Understanding the growth of zirconium alloys under irradiation and their microstructure evolution , 2020 .

[11]  P. Pilvin,et al.  Polycrystalline modeling of the behavior of neutron-irradiated recrystallized zirconium alloys during strain path change tests , 2020 .

[12]  S. Dudarev,et al.  Microscopic structure of a heavily irradiated material , 2020, Physical Review Materials.

[13]  C. Domain,et al.  A new scenario for ‹c› vacancy loop formation in zirconium based on atomic-scale modeling , 2019, Acta Materialia.

[14]  C. Coleman,et al.  Irradiation creep and growth of zirconium alloys: A critical review , 2019, Journal of Nuclear Materials.

[15]  S. Shi,et al.  Point defect sink strength of low-angle tilt grain boundaries: A phase field dislocation climb model , 2019, International Journal of Plasticity.

[16]  M. Preuss,et al.  Effect of Nb and Fe on damage evolution in a Zr-alloy during proton and neutron irradiation , 2019, Acta Materialia.

[17]  C. Tomé,et al.  Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy , 2018, International Journal of Plasticity.

[18]  L. Dupuy,et al.  Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation , 2017 .

[19]  M. Preuss,et al.  The effect of matrix chemistry on dislocation evolution in an irradiated Zr alloy , 2017 .

[20]  X. Feaugas,et al.  Impact of an applied stress on c-component loops under Zr ion irradiation in recrystallized Zircaloy-4 and M5® , 2015 .

[21]  F. Dunne,et al.  Strain localization and failure in irradiated zircaloy with crystal plasticity , 2015 .

[22]  R. Stoller,et al.  Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation , 2015 .

[23]  R. Stoller,et al.  Analysis of the anisotropy of point defect diffusion in hcp Zr , 2014 .

[24]  C. Domain,et al.  Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr: Multiscale modeling , 2014 .

[25]  L. Dupuy,et al.  Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium , 2014 .

[26]  C. Domain,et al.  Quantitative phase field model for dislocation sink strength calculations , 2014 .

[27]  C. Domain,et al.  Self-interstitial defects in hexagonal close packed metals revisited: Evidence for low-symmetry configurations in Ti, Zr, and Hf , 2013 .

[28]  F. Onimus,et al.  Experimental study and numerical modelling of the irradiation damage recovery in zirconium alloys , 2010 .

[29]  Alain Barbu,et al.  Cluster Dynamics modelling of irradiation growth of zirconium single crystals , 2009 .

[30]  F. Willaime,et al.  Anisotropy of the Vacancy Migration in Ti, Zr and Hf Hexagonal Close-Packed Metals from First Principles , 2007 .

[31]  G. Ackland,et al.  Development of an interatomic potential for the simulation of phase transformations in zirconium , 2007 .

[32]  F. Christien,et al.  Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling , 2005 .

[33]  A. Legris,et al.  Ab initio atomic-scale determination of point-defect structure in hcp zirconium , 2005 .

[34]  Lorenzo Malerba,et al.  Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach , 2004 .

[35]  D. Bacon,et al.  Anisotropy of point defect diffusion in alpha-zirconium , 2002 .

[36]  K. Roberts,et al.  Thesis , 2002 .

[37]  P. A. Turner,et al.  A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep , 1999 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  K. M. Decker,et al.  Massively parallel molecular dynamics simulations with EAM potentials , 1997 .

[40]  P. A. Turner,et al.  Self-consistent modeling of visco-elastic polycrystals: Application to irradiation creep and growth , 1993 .

[41]  M. Griffiths A review of microstructure evolution in zirconium alloys during irradiation , 1988 .

[42]  C. Woo Theory of irradiation deformation in non-cubic metals: Effects of anisotropic diffusion , 1988 .

[43]  C. Hellio,et al.  Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in α-zirconium , 1988 .

[44]  R. Zee,et al.  Irradiation growth of zirconium single crystals: A review , 1988 .

[45]  P. Kelly,et al.  The nature of dislocation loops in neutron irradiated zirconium , 1977 .

[46]  P. Kelly,et al.  An interpretation of corduroy contrast in neutron irradiated zirconium , 1976 .

[47]  F. Nichols On the mechanisms of irradiation creep in zirconium-base alloys , 1970 .

[48]  M. Griffiths Irradiation Growth , 2020, Comprehensive Nuclear Materials.

[49]  M. Daymond,et al.  Orientation-dependent irradiation hardening in pure Zr studied by nanoindentation, electron microscopies, and crystal plasticity finite element modeling , 2020 .

[50]  Cheng Xu,et al.  Irradiation Creep in Materials , 2020 .

[51]  R. Tewari,et al.  Zirconium and its Alloys: Properties and Characteristics , 2020 .

[52]  A. Legris,et al.  3D phase-field modelling of dislocation loop sink strengths , 2017 .

[53]  S. Choi,et al.  Modeling of sink-induced irradiation growth of single-crystal and polycrystal zirconiums in nuclear reactors , 2016 .

[54]  N. Wang,et al.  Phase Field Methods , 2016 .

[55]  H. Neely DAMAGE RATE AND RECOVERY MEASUREMENTS ON ZIRCONIUM AFTER ELECTRON IRRADIATION AT LOW TEMPERATURES. , 1970 .

[56]  Konings Rudy,et al.  Corrosion of Zirconium Alloys , 1964 .