Universal susceptibility variations in 1+1 dimensional vortex glass

[1]  C. A. Bolle,et al.  Observation of mesoscopic vortex physics using micromechanical oscillators , 1999, Nature.

[2]  C. Henley Relaxation time for a dimer covering with height representation , 1996, cond-mat/9607222.

[3]  Tricia Walker,et al.  Computer science , 1996, English for academic purposes series.

[4]  E. Marinari,et al.  How (Super) Rough is the Glassy Phase of a Crystalline Surface with a Disordered Substrate , 1995, cond-mat/9503074.

[5]  T. Giamarchi,et al.  Elastic theory of flux lattices in the presence of weak disorder. , 1995, Physical review. B, Condensed matter.

[6]  Shapir,et al.  Glassy roughness of a crystalline surface upon a disordered substrate. , 1994, Physical review letters.

[7]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[8]  Hwa,et al.  Dynamic and static properties of the randomly pinned planar flux array. , 1994, Physical review letters.

[9]  Fisher,et al.  Vortex glass phase and universal susceptibility variations in planar arrays of flux lines. , 1993, Physical review letters.

[10]  Fisher,et al.  Anomalous fluctuations of directed polymers in random media. , 1993, Physical Review B (Condensed Matter).

[11]  Marianne Cramer,et al.  Urban Renewal , 1993, Restoration & Management Notes.

[12]  Nelson,et al.  Flux-line pinning by competing disorders. , 1993, Physical review. B, Condensed matter.

[13]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .

[14]  I. Lyuksyutov,et al.  Flux Creep in Two-Dimensional Vortex Glasses Near Hc1 , 1991 .

[15]  M. Mézard On the glassy nature of random directed polymers in two dimensions , 1990 .

[16]  DiVincenzo,et al.  Super-roughening: A new phase transition on the surfaces of crystals with quenched bulk disorder. , 1990, Physical review. B, Condensed matter.

[17]  Fisher,et al.  Vortex-glass superconductivity: A possible new phase in bulk high-Tc oxides. , 1989, Physical review letters.

[18]  É. Brézin,et al.  Thermal fluctuations in some random field models , 1988 .

[19]  J. Cardy,et al.  Random symmetry-breaking fields and the XY model , 1982 .

[20]  B. McCoy,et al.  Correlations in ice-rule ferroelectrics , 1980 .

[21]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[22]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .