Plasmonic absorption enhancement in graphene circular and elliptical disk arrays

[1]  Bo O. Zhu,et al.  Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. , 2014, Optics express.

[2]  Peng Mao,et al.  Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials , 2016, IEEE Photonics Journal.

[3]  Chao Liu,et al.  Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. , 2018, Optics express.

[4]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[5]  Huaqing Yu,et al.  Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system , 2017 .

[6]  L. Cao,et al.  Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO 3 matrix , 2018, Applied Surface Science.

[7]  Biao Zheng,et al.  Enhanced quantum cutting luminescence by Au nanorods through improving radiative transition rate , 2017 .

[8]  Zhiyan. Wang,et al.  Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO 2 for lithium ion batteries , 2018 .

[9]  L. Cao,et al.  Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO 3 matrix , 2018 .

[10]  Tao Zhang,et al.  Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes , 2016, IEEE Photonics Technology Letters.

[11]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[12]  Soon Keat Tan,et al.  Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling , 2018 .

[13]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[14]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[15]  Zhirun Hu,et al.  Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach , 2015 .

[16]  L. Cao,et al.  Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40 , 2019, Journal of Alloys and Compounds.

[17]  Weitang Yao,et al.  Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode , 2019, Materials Letters.

[18]  X. Ye,et al.  Plasmonic Absorption Enhancement in Elliptical Graphene Arrays , 2018, Nanomaterials.

[19]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[20]  Chunman Yan,et al.  Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators , 2018, Photonic Sensors.

[21]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[22]  Zao Yi,et al.  Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[23]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[24]  Xin Ye,et al.  Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance , 2019, Optics Communications.

[25]  J. Pendry,et al.  Broadband Tunable THz Absorption with Singular Graphene Metasurfaces. , 2018, ACS nano.

[26]  Jing Huang,et al.  A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays , 2018, Sensors.

[27]  Hua Yang,et al.  Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation , 2018, Micromachines.

[28]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  Zao Yi,et al.  Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties , 2018 .

[31]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[32]  G. W. Ford,et al.  Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. , 1981, Optics letters.

[33]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[34]  Lei Zhou,et al.  Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. , 2018, Optics express.

[35]  David R. Smith,et al.  Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging , 2018, Light: Science & Applications.

[36]  Yunping Qi,et al.  Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure , 2018, AIP Advances.

[37]  Hua Yang,et al.  Theoretical study of multiexposure zeroth-order waveguide mode interference lithography , 2018, Optical and Quantum Electronics.

[38]  X. Ye,et al.  Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays , 2018 .

[39]  Zao Yi,et al.  Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays , 2018, Superlattices and Microstructures.

[40]  B. Wang,et al.  Plasmonic absorption enhancement in periodic cross-shaped graphene arrays , 2015, 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).

[41]  Hua Yang,et al.  Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance , 2018, Journal of Materials Science: Materials in Electronics.

[42]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[43]  Xinxin Zhao,et al.  Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity , 2018, Materials Research Bulletin.

[44]  Feng Zhang,et al.  Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. , 2017, Optics express.

[45]  Zao Yi,et al.  Absorption enhancement in double-layer cross-shaped graphene arrays , 2018 .

[46]  Chen Xu,et al.  Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials , 2017, 1705.09082.

[47]  Xinxin Zhao,et al.  Enhanced photocatalytic activity of surface disorder-engineered CaTiO 3 , 2018, Materials Research Bulletin.

[48]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[49]  Xiangming Liu,et al.  Spin-selected and spin-independent dielectric metalenses , 2018, Journal of Optics.

[50]  Zongfu Yu,et al.  A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene. , 2015, Optics express.

[51]  Abul K. Azad,et al.  Metasurface Broadband Solar Absorber , 2015, Scientific Reports.

[52]  Xiang Zhai,et al.  Multi-band perfect plasmonic absorptions using rectangular graphene gratings. , 2017, Optics letters.

[53]  X. Ye,et al.  Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem , 2018, Nanomaterials.

[54]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[55]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[56]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[57]  L. Pan,et al.  A graphene-based Fabry-Pérot spectrometer in mid-infrared region , 2016, Scientific Reports.