Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples

In this paper, we consider the problem of recovering a compactly supported multivariate function from a collection of pointwise samples of its Fourier transform taken nonuniformly. We do this by using the concept of weighted Fourier frames. A seminal result of Beurling shows that sample points give rise to a classical Fourier frame provided they are relatively separated and of sufficient density. However, this result does not allow for arbitrary clustering of sample points, as is often the case in practice. Whilst keeping the density condition sharp and dimension independent, our first result removes the separation condition and shows that density alone suffices. However, this result does not lead to estimates for the frame bounds. A known result of Groechenig provides explicit estimates, but only subject to a density condition that deteriorates linearly with dimension. In our second result we improve these bounds by reducing the dimension dependence. In particular, we provide explicit frame bounds which are dimensionless for functions having compact support contained in a sphere. Next, we demonstrate how our two main results give new insight into a reconstruction algorithm---based on the existing generalized sampling framework---that allows for stable and quasi-optimal reconstruction in any particular basis from a finite collection of samples. Finally, we construct sufficiently dense sampling schemes that are often used in practice---jittered, radial and spiral sampling schemes---and provide several examples illustrating the effectiveness of our approach when tested on these schemes.

[2]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[3]  Dejan Slepcev,et al.  Properties of Minimizers of Average-Distance Problem via Discrete Approximation of Measures , 2013, SIAM J. Math. Anal..

[4]  Yonina C. Eldar Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .

[5]  Gitta Kutyniok,et al.  Linear Stable Sampling Rate: Optimality of 2D Wavelet Reconstructions from Fourier Measurements , 2015, SIAM J. Math. Anal..

[6]  Kristian Seip,et al.  On the Connection between Exponential Bases and Certain Related Sequences in L2(− π,π) , 1995 .

[7]  Karlheinz Gröchenig,et al.  Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type , 1999, Math. Comput..

[8]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[9]  O. Christensen Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .

[10]  Volker Rasche,et al.  Resampling of data between arbitrary grids using convolution interpolation , 1999, IEEE Transactions on Medical Imaging.

[11]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[12]  Hans G. Feichtinger,et al.  Theory and practice of irregular sampling , 2021, Wavelets.

[13]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[14]  Helly Fourier transforms in the complex domain , 1936 .

[15]  Ññøøøññøø Blockin Random Sampling of Multivariate Trigonometric Polynomials , 2004 .

[16]  Michael Unser,et al.  A review of wavelets in biomedical applications , 1996, Proc. IEEE.

[17]  A. Aldroubi Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces , 2002 .

[18]  Clarice Poon,et al.  A Practical Guide to the Recovery of Wavelet Coefficients from Fourier Measurements , 2015, SIAM J. Sci. Comput..

[19]  J. Benedetto,et al.  Modern Sampling Theory: Mathematics and Applications , 2012 .

[20]  J. Benedetto Irregular sampling and frames , 1993 .

[21]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[22]  Klaas Paul Pruessmann,et al.  A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging , 2011, IEEE Transactions on Medical Imaging.

[23]  Bénédicte M A Delattre,et al.  Spiral demystified. , 2010, Magnetic resonance imaging.

[24]  Daniel Potts,et al.  Numerical stability of nonequispaced fast Fourier transforms , 2008 .

[25]  Ben Adcock,et al.  On Stable Reconstructions from Nonuniform Fourier Measurements , 2013, SIAM J. Imaging Sci..

[26]  Y. Meyer,et al.  Simple quasicrystals are sets of stable sampling , 2010 .

[27]  Daniel Rosenfeld,et al.  New approach to gridding using regularization and estimation theory , 2002, Magnetic resonance in medicine.

[28]  John J. Benedetto,et al.  Nonuniform sampling and spiral MRI reconstruction , 2000, SPIE Optics + Photonics.

[29]  Ben Adcock,et al.  Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon , 2010, 1011.6625.

[30]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[31]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[32]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[33]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[34]  F. Marvasti Nonuniform sampling : theory and practice , 2001 .

[35]  N. Levinson Gap and Density Theorems , 1940 .

[36]  Thomas Strohmer,et al.  Numerical analysis of the non-uniform sampling problem , 2000 .

[37]  Ben Adcock,et al.  Beyond Consistent Reconstructions: Optimality and Sharp Bounds for Generalized Sampling, and Application to the Uniform Resampling Problem , 2013, SIAM J. Math. Anal..

[38]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[39]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[40]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[41]  A. Olevskiǐ,et al.  On multi-dimensional sampling and interpolation , 2012, 1304.0648.

[42]  Karlheinz Gröchenig,et al.  Pseudospectral Fourier reconstruction with the modified Inverse Polynomial Reconstruction Method , 2010, J. Comput. Phys..

[43]  J. Gabardo Weighted tight frames of exponentials on a finite interval , 1993 .

[44]  Charles L. Epstein,et al.  Introduction to the mathematics of medical imaging , 2003 .

[45]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[46]  Ben Adcock,et al.  A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases , 2010, 1007.1852.

[47]  Ben Adcock,et al.  On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate , 2012, ArXiv.

[48]  Stéphane Jaffard,et al.  A density criterion for frames of complex exponentials. , 1991 .

[49]  Stefan Kunis,et al.  Stability Results for Scattered Data Interpolation by Trigonometric Polynomials , 2007, SIAM J. Sci. Comput..

[50]  K. Gröchenig,et al.  Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .

[51]  Karlheinz Gröchenig Non-Uniform Sampling in Higher Dimensions: From Trigonometric Polynomials to Bandlimited Functions , 2001 .

[52]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[53]  Ben Adcock,et al.  REDUCED CONSISTENCY SAMPLING IN HILBERT SPACES , 2011 .

[54]  Stefan Kunis,et al.  A Note on the Iterative MRI Reconstruction from Nonuniform k-Space Data , 2007, Int. J. Biomed. Imaging.

[55]  Jae-Hun Jung,et al.  Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon , 2004 .

[56]  K. Seip Interpolation and sampling in spaces of analytic functions , 2004 .

[57]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[58]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[59]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.