A note on Jensen type inequality for Choquet integrals

The purpose of this paper is to prove a Jensen type inequality for Choquet integrals with respect to a non-additive measure which was introduced by Choquet[1] and Sugeno[20]; φ((C) ? fdμ) ≤ (C) ? φ(f)dμ, where f is Choquet integrable, φ [0,∞) is convex, φ(α) ≤ α for all α ∈ [0, ∞) and μ f (α)≤μ φ(f) (α) for all α ∈ [0, ∞). Furthermore, we give some examples assuring both satisfaction and dissatisfaction of Jensen type inequality for the Choquet integral.

[1]  G. Choquet Theory of capacities , 1954 .

[2]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[3]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[4]  M. Sugeno,et al.  A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .

[5]  L. C. Jang,et al.  Some properties of Choquet integrals of set-valued functions , 1997, Fuzzy Sets Syst..

[6]  L. C. Jang,et al.  On the representation of Choquet integrals of set-valued functions, and null sets , 2000, Fuzzy Sets Syst..

[7]  Taekyun Kim,et al.  On set-valued Choquet integrals and convergence theorems(II) , 2002 .

[8]  Taekyun Kim,et al.  ON SET-VALUED CHOQUET INTEGRALS AND CONVERGENCE THEOREMS (II) , 2003 .

[9]  A. D. Waegenaere,et al.  Choquet pricing and equilibrium , 2003 .

[10]  Taekyun Kim,et al.  ON CHOQUET INTEGRALS OF MEASURABLE FUZZY NUMBER-VALUED FUNCTIONS , 2004 .

[11]  Lee-Chae Jang INTERVAL-VALUED CHOQUET INTEGRALS AND THEIR APPLICATIONS , 2004 .

[12]  Jean-Luc Marichal,et al.  Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral , 2004, Eur. J. Oper. Res..

[13]  Taekyun Kim,et al.  On comonotonically additive interval-valued functionals and interval-valued Choquet integrals(II) , 2004 .

[14]  L. Jang,et al.  Some properties of Choquet distance measures for interval-valued fuzzy numbers , 2005 .

[15]  Chae-Jang Lee Some characterizations of interval-valued Choquet price functionals , 2006 .

[16]  Hung T. Nguyen,et al.  Choquet weak convergence of capacity functionals of random sets , 2007, Inf. Sci..

[17]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..

[18]  L. Jang Interval-valued Choquet integrals and applications in pricing risks , 2007 .

[19]  Horst Bunke,et al.  Automatic learning of cost functions for graph edit distance , 2007, Inf. Sci..

[20]  L. Jang A note on distance measure and similarity measure defined by Choquet integral on interval-valued fuzzy sets , 2007 .

[21]  L. Jang Structural characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral , 2008 .

[22]  Lee-Chae Jang Subsethood Measures Defined by Choquet Integrals , 2008, Int. J. Fuzzy Log. Intell. Syst..

[23]  김영희,et al.  Choquet weak convergence for interval-valued capacity functionals of random sets , 2008 .

[24]  Kellen Petersen August Real Analysis , 2009 .

[25]  M. Azab Abd-Allah,et al.  L-pre-separation axioms in (2, L)-topologies based on complete residuated lattice-valued logic , 2009, Int. J. Fuzzy Log. Intell. Syst..