Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes

[1]  M. Leake,et al.  Single-molecule techniques in biophysics: a review of the progress in methods and applications , 2017, Reports on progress in physics. Physical Society.

[2]  P. Lory,et al.  T‐type voltage gated calcium channels are involved in endothelium‐dependent relaxation of mice pulmonary artery , 2017, Biochemical pharmacology.

[3]  G. Fantner,et al.  Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy , 2017, Nano Research.

[4]  I. Sokolov,et al.  Spot variation fluorescence correlation spectroscopy by data post-processing , 2017, Scientific Reports.

[5]  Tomaso Zambelli,et al.  Tunable Single-Cell Extraction for Molecular Analyses , 2016, Cell.

[6]  Tomaso Zambelli,et al.  Template‐Free 3D Microprinting of Metals Using a Force‐Controlled Nanopipette for Layer‐by‐Layer Electrodeposition , 2016, Advanced materials.

[7]  J. Vörös,et al.  Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. , 2016, Biointerphases.

[8]  Phillip Roder,et al.  A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette , 2015, PloS one.

[9]  Thomas Hankemeier,et al.  Microfluidic 3D cell culture: from tools to tissue models. , 2015, Current opinion in biotechnology.

[10]  J. Vörös,et al.  Local surface modification via confined electrochemical deposition with FluidFM , 2015 .

[11]  M. Kube,et al.  ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: from draft genome to genetic diversity among strain populations , 2015, BMC Microbiology.

[12]  Tomaso Zambelli,et al.  Bacterial adhesion force quantification by fluidic force microscopy. , 2015, Nanoscale.

[13]  Philipp Stiefel,et al.  Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide , 2015, BMC Microbiology.

[14]  Phillip Roder,et al.  ANG-2 for quantitative Na^+ determination in living cells by time-resolved fluorescence microscopy , 2014, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[15]  Tomaso Zambelli,et al.  Force-controlled manipulation of single cells: from AFM to FluidFM. , 2014, Trends in biotechnology.

[16]  M. S. Jafri,et al.  Calcium Waves , 2014, Encyclopedia of Computational Neuroscience.

[17]  H. Löhmannsröben,et al.  Time-resolved fluorescence microscopy for quantitative Ca2+ imaging in living cells , 2013, Analytical and Bioanalytical Chemistry.

[18]  Lisa J. Mellander,et al.  Evaluating the diffusion coefficient of dopamine at the cell surface during amperometric detection: disk vs ring microelectrodes. , 2013, Analytical chemistry.

[19]  Tomaso Zambelli,et al.  Force-controlled fluidic injection into single cell nuclei. , 2013, Small.

[20]  S. Hamm-Alvarez,et al.  Analyzing live cellularity in the human trabecular meshwork. , 2013, Investigative ophthalmology & visual science.

[21]  C. Dosche,et al.  Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells. , 2011, American journal of physiology. Cell physiology.

[22]  T. E. Hall,et al.  A novel fluorescence imaging approach for comparative measurements of pancreatic islet function in vitro , 2011, Islets.

[23]  C. Combs,et al.  Fluorescence Microscopy: A Concise Guide to Current Imaging Methods , 2010, Current protocols in neuroscience.

[24]  David S Lawrence,et al.  Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. , 2009, ACS chemical biology.

[25]  Tomaso Zambelli,et al.  FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. , 2009, Nano letters.

[26]  H. Löhmannsröben,et al.  Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[27]  M. Radisic,et al.  Spatiotemporal tracking of cells in tissue‐engineered cardiac organoids , 2009, Journal of tissue engineering and regenerative medicine.

[28]  Bruno Romano,et al.  NO release by nitric oxide donors in vitro and in planta. , 2009, Plant physiology and biochemistry : PPB.

[29]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[30]  F. Pampaloni,et al.  The third dimension bridges the gap between cell culture and live tissue , 2007, Nature Reviews Molecular Cell Biology.

[31]  E. Solary,et al.  Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. , 2007, Free radical biology & medicine.

[32]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[33]  D. Spence,et al.  Fluorescence determination of nitric oxide production in stimulated and activated platelets. , 2007, Analytical chemistry.

[34]  Gerd Bicker Pharmacological approaches to nitric oxide signalling during neural development of locusts and other model insects. , 2007, Archives of insect biochemistry and physiology.

[35]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[36]  A. Baumann,et al.  The aminergic control of cockroach salivary glands. , 2006, Archives of insect biochemistry and physiology.

[37]  Hartmut Schmidt,et al.  Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. , 2006, Cell calcium.

[38]  C. Hille,et al.  Dopamine-induced graded intracellular Ca2+ elevation via the Na+Ca2+ exchanger operating in the Ca2+-entry mode in cockroach salivary ducts. , 2006, Cell calcium.

[39]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[40]  Khajak Berberian,et al.  Electrochemical imaging of fusion pore openings by electrochemical detector arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Bundgaard,et al.  The nitric oxide donor sodium nitroprusside stimulates the Na+–K+ pump in isolated rabbit cardiac myocytes , 2005, The Journal of physiology.

[42]  G. L. Bretthorst,et al.  Sodium ion apparent diffusion coefficient in living rat brain , 2005, Magnetic resonance in medicine.

[43]  R. Leurs,et al.  The histamine H3 receptor: from gene cloning to H3 receptor drugs , 2005, Nature Reviews Drug Discovery.

[44]  M. A. Islam,et al.  Einstein–Smoluchowski Diffusion Equation: A Discussion , 2004 .

[45]  M. Spasić,et al.  Effects of exogenous donor of nitric oxide-sodium nitroprusside on energy production of rat reticulocytes. , 2004, Physiological research.

[46]  A. Pedersen,et al.  Nitric oxide signalling in salivary glands. , 2002, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[47]  C. Cooper,et al.  Nitric oxide synthases: structure, function and inhibition. , 2001, The Biochemical journal.

[48]  B. Walz,et al.  Dopamine-induced epithelial K(+) and Na(+) movements in the salivary ducts of Periplaneta americana. , 2001, Journal of insect physiology.

[49]  Xiaoping Liu,et al.  The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Zimmermann Control of InsP3‐induced Ca2+ oscillations in permeabilized blowfly salivary gland cells: contribution of mitochondria , 2000, The Journal of physiology.

[51]  Kojima,et al.  Fluorescent Indicators for Imaging Nitric Oxide Production. , 1999, Angewandte Chemie.

[52]  J. Hibberd,et al.  A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes , 1999, Nature Biotechnology.

[53]  S. Moncada Nitric oxide: discovery and impact on clinical medicine , 1999, Journal of the Royal Society of Medicine.

[54]  B. Walz,et al.  Dopamine stimulates salivary duct cells in the cockroach Periplaneta americana. , 1999, The Journal of experimental biology.

[55]  P. Lebaron,et al.  Comparison of Blue Nucleic Acid Dyes for Flow Cytometric Enumeration of Bacteria in Aquatic Systems , 1998, Applied and Environmental Microbiology.

[56]  Walz,et al.  The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands , 1996, The Journal of experimental biology.

[57]  B. Wetton,et al.  Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. , 1995, The American journal of physiology.

[58]  B. Walz,et al.  Salivary glands of the cockroach, Periplaneta americana: New data from light and electron microscopy , 1994, Journal of morphology.

[59]  J. Sneyd,et al.  A model for the propagation of intercellular calcium waves. , 1994, The American journal of physiology.

[60]  J. Gromada,et al.  Ca2+ signalling in exocrine acinar cells: the diffusional properties of cellular inositol 1,4,5-trisphosphate and its role in the release of Ca2+. , 1993, Cell calcium.

[61]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[62]  R. Abercrombie,et al.  Free diffusion coefficient of ionic calcium in cytoplasm. , 1987, Cell calcium.

[63]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[64]  E. R. de Arantes e Oliveira,et al.  Two-Dimensional Model , 1975 .

[65]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[66]  Chester W. Washburne,et al.  A Discussion of , 1920 .