Design of decision rules for crowd controlling using macroscopic pedestrian flow simulation

Crowd control mechanisms such as temporary access restrictions allow affecting pedestrian flows in public transport facilities in order to avoid overcrowding. Such access restrictions can be based on decision rules depending on measured pedestrian density. In order to design these decision rules, simulations of pedestrian flows are a valuable tool. In this paper we describe the design of decision rules for a real case study constituted by a subway station next to the main soccer stadium in Vienna. The simulations use a macroscopic model which (1) includes dynamic elements (like e.g. arriving and departing trains) and (2) integrates the implementation of decision rules based on real time measurements of real people flows. The model also takes into account measurement errors. We discuss the simulation results for the case study with the resulting decision rules in place.

[1]  Dietmar Bauer,et al.  Macroscopic pedestrian flow simulation for designing crowd control measures in public transport after special events , 2007, SCSC.

[2]  C. Beleznai,et al.  Human tracking by mode seeking , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..