A possibilistic approach to clustering

The clustering problem is cast in the framework of possibility theory. The approach differs from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values can be interpreted as degrees of possibility of the points belonging to the classes, i.e., the compatibilities of the points with the class prototypes. An appropriate objective function whose minimum will characterize a good possibilistic partition of the data is constructed, and the membership and prototype update equations are derived from necessary conditions for minimization of the criterion function. The advantages of the resulting family of possibilistic algorithms are illustrated by several examples. >

[1]  H. Zimmermann,et al.  Quantifying vagueness in decision models , 1985 .

[2]  Hichem Frigui,et al.  New fuzzy shell clustering algorithms for boundary detection and pattern recognition , 1992, Other Conferences.

[3]  James C. Bezdek,et al.  Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm , 1992, IEEE Trans. Neural Networks.

[4]  Michael Spann,et al.  A new approach to clustering , 1990, Pattern Recognit..

[5]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[6]  J. Dombi Membership function as an evaluation , 1990 .

[7]  D. Dubois,et al.  Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms , 1983 .

[8]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[9]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[10]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[11]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[12]  James M. Keller,et al.  Fuzzy Set Methods in Computer Vision , 1992 .

[13]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[14]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[15]  V. V. S. Sarma,et al.  Estimation of fuzzy memberships from histograms , 1985, Inf. Sci..

[16]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Hichem Frigui,et al.  The fuzzy c spherical shells algorithm: A new approach , 1992, IEEE Trans. Neural Networks.

[18]  Frank P. Ferrie,et al.  From Uncertainty to Visual Exploration , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hichem Frigui,et al.  A fuzzy clustering algorithm to detect planar and quadric shapes , 1992 .

[20]  Edwin Diday,et al.  The Dynamic Clusters Method in Pattern Recognition , 1974, IFIP Congress.

[21]  Kurra Bhaswan,et al.  New measures for evaluating fuzzy partitions induced through c-shells clustering , 1992, Other Conferences.

[22]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[23]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[25]  Rajesh N. Davé,et al.  Adaptive fuzzy c-shells clustering and detection of ellipses , 1992, IEEE Trans. Neural Networks.

[26]  Terrance L. Huntsberger,et al.  PARALLEL SELF-ORGANIZING FEATURE MAPS FOR UNSUPERVISED PATTERN RECOGNITION , 1990 .

[27]  R. Davé FUZZY SHELL-CLUSTERING AND APPLICATIONS TO CIRCLE DETECTION IN DIGITAL IMAGES , 1990 .

[28]  Peng Zhang,et al.  A Highly Robust Estimator Through Partially Likelihood Function Modeling and Its Application in Computer Vision , 1992, IEEE Trans. Pattern Anal. Mach. Intell..