Mesoscale Domains and Nature of the Relaxor State by Piezoresponse Force Microscopy

Ferroelectric relaxors continue to be one of the most mysterious solid-state materials. Since their discovery by Smolenskii and coworkers, there have been many attempts to understand the properties of these materials, which are exotic, yet useful for applications. On the basis of the numerous experimental data, several theories have been established, but none of them can explain all the properties of relaxors. The recent advent of piezoresponse force microscopy (PFM) has allowed for polarization mapping on the surface of relaxors with subnanometer resolution. This development thus leads to the question of whether the polar nanoregions that contribute to diffuse X-ray scattering and a range of macroscopic properties can be visualized. This review summarizes recent advancements in the application of PFM to a number of ferroelectric relaxors and provides a tentative explanation of the peculiar polarization distributions related to the intriguing physical phenomena in these materials.

[1]  R. Pankrath,et al.  Uniaxial relaxor ferroelectrics: The ferroic random-field Ising model materialized at last , 2002 .

[2]  L. Ivleva,et al.  Ferroelectric microdomains and microdomain arrays recorded in strontium–barium niobate crystals in the field of atomic force microscope , 2010 .

[3]  S. Prosandeev,et al.  Nature of thermally stimulated acoustic emission from PbMg1/3Nb2/3O3–PbTiO3 solid solutions , 2009 .

[4]  V. Shvartsman,et al.  Investigation of the ferroelectric-relaxor transition in PbMg1/3Nb2/3O3–PbTiO3 ceramics by piezoresponse force microscopy , 2010 .

[5]  L. Ivleva,et al.  Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals , 2011 .

[6]  A. Kholkin,et al.  Local domain engineering in relaxor 0.77PbMg1/3Nb2/3O3-0.23PbSc1/2Nb1/2O3 single crystals , 2011 .

[7]  L. Bellaiche,et al.  Intermediate temperature scale T* in lead-based relaxor systems , 2009, 0901.2604.

[8]  V. Shvartsman,et al.  Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6 , 2006 .

[9]  T. Łukasiewicz,et al.  Nanopolar structure in Sr x Ba 1 − x Nb 2 O 6 single crystals tuned by Sr ∕ Ba ratio and investigated by piezoelectric force microscopy , 2008 .

[10]  S. Kojima,et al.  Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission , 2011 .

[11]  E. Williams,et al.  Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films , 1999 .

[12]  R. Pankrath,et al.  Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce 3+ x , 2001 .

[13]  J. Dai,et al.  Time- and temperature-dependent domain evolutions in poled (111)-cut (Pb(Mg1∕3Nb2∕3)O3)0.7(PbTiO3)0.3 single crystal , 2007 .

[14]  J. Scott,et al.  Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics , 2006 .

[15]  G. Shirane,et al.  Development of ferroelectric order in relaxor (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (0≤x≤0.15) , 2002, cond-mat/0208058.

[16]  O. Noblanc,et al.  Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary , 1996 .

[17]  Colla,et al.  Long-time relaxation of the dielectric response in lead magnoniobate. , 1995, Physical review letters.

[18]  V. Shvartsman,et al.  Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics , 2005 .

[19]  T. Granzow,et al.  Influence of pinning effects on the ferroelectric hysteresis in cerium-doped Sr 0.61 Ba 0.39 Nb 2 O 6 , 2001 .

[20]  T. Łukasiewicz,et al.  From mesoscopic to global polar order in the uniaxial relaxor ferroelectric Sr0.8Ba0.2Nb2O6 , 2012 .

[21]  A. Young,et al.  The random field Ising model , 1991 .

[22]  Y. Ishibashi,et al.  Domain Wall Structure in Pb(Zn1/3Nb2/3)O3-PbTiO3-Mixed Crystals by Atomic Force Microscopy , 2004 .

[23]  T. Łukasiewicz,et al.  Evolution of the Polar Structure in Relaxor Ferroelectrics Close to the Curie Temperature Studied by Piezoresponse Force Microscopy , 2008 .

[24]  G.-M. Rotaru,et al.  Relaxing with relaxors: a review of relaxor ferroelectrics , 2011 .

[25]  W. Kleemann Absence of true critical exponents in relaxor ferroelectrics: the case for nanodomain freezing , 2006 .

[26]  G. Samara,et al.  Relaxor Ferroelectrics – from Random Field Models to Glassy Relaxation and Domain States , 2005 .

[27]  The relaxor enigma — charge disorder and random fields in ferroelectrics , 2006 .

[28]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[29]  V. Shvartsman,et al.  POLAR STRUCTURES OF PbMg1/3Nb2/3O3-PbTiO3 RELAXORS: PIEZORESPONSE FORCE MICROSCOPY APPROACH , 2012 .

[30]  J. Hlinka DO WE NEED THE ETHER OF POLAR NANOREGIONS , 2012 .

[31]  V. Shvartsman,et al.  Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals , 2007 .

[32]  A. M. Glass,et al.  Investigation of the Electrical Properties of Sr1−xBaxNb2O6 with Special Reference to Pyroelectric Detection , 1969 .

[33]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[34]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[35]  T. Łukasiewicz,et al.  Ferroelectric Domains in SrxBa1 − xNb2O6 Single Crystals (0.4 ≤ × ≤ 0.75) , 2008 .

[36]  M. S. Panchelyuga,et al.  Quasivertical line in the phase diagram of single crystals of Pb Mg1 3 Nb2 3 O3 -x PbTiO3 (x=0.00, 0.06, 0.13, and 0.24) with a giant piezoelectric effect , 2007 .

[37]  S. Wada,et al.  The Effect of the Particle Sizes and the Correlational Sizes of Dipoles Introduced by the Lattice Defects on the Crystal Structure of Barium Titanate Fine Particles , 1995 .

[38]  K. Zhao,et al.  Domain structure of [(Na0.7K0.2Li0.1)0.5Bi0.5]TiO3 ceramics studied by piezoresponse force microscopy , 2009 .

[39]  G. Samara Pressure as a probe of the glassy properties of compositionally disordered soft mode ferroelectrics: (Pb0.82La0.12)(Zr0.40Ti0.60)O3 (PLZT 12/40/60) , 1998 .

[40]  Stephen Jesse,et al.  Mapping bias-induced phase stability and random fields in relaxor ferroelectrics , 2009 .

[41]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[42]  P. Gehring,et al.  The anomalous skin effect in single crystal relaxor ferroelectric PZN- x PT and PMN- x PT , 2006, cond-mat/0608033.

[43]  Z. K. Xu,et al.  Diffuse phase transition in BaTi1−xSnxO3 ceramics: An intermediate state between ferroelectric and relaxor behavior , 2006 .

[44]  A. Safari,et al.  Local hysteresis and grain size effect in Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films , 2002 .

[45]  B. Dkhil,et al.  Dielectric evidences of core-shell-like effects in nanosized relaxor PbMg1∕3Nb2∕3O3 , 2008 .

[46]  Barbara Malič,et al.  Size-driven relaxation and polar states inPbMg1∕3Nb2∕3O3-based system , 2005 .

[47]  N. K. Yushin,et al.  Electrostrictive actuators on base of PMN-PSN solid solution ceramics , 1994 .

[48]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[49]  B. Dkhil,et al.  X-ray study of the kinetics of field induced transition from the glass-like to the ferroelectric phase in lead magnoniobate , 1997 .

[50]  Anna N. Morozovska,et al.  Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics , 2011 .

[51]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[52]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[53]  G. Smolensky Ferroelectrics with diffuse phase transition , 1984 .

[54]  Sergei V. Kalinin,et al.  Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach , 2010, Materials.

[55]  Anna N. Morozovska,et al.  Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions , 2010 .

[56]  J. H. Fox,et al.  Direct observation of the near-surface layer inPb(Mg1∕3Nb2∕3)O3using neutron diffraction , 2004, cond-mat/0407609.

[57]  Massimiliano Labardi,et al.  Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy , 2000 .

[58]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[59]  Y. H. Chang,et al.  Properties and microstructures of PLZT ceramics hot-pressed from commercial powders , 1989 .

[60]  Kunihiro Nagata,et al.  Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics , 1973 .

[61]  S. B. Krupanidhi,et al.  Effect of oxygen pressure on the grain and domain structure of polycrystalline 0.85PbMg1/3Nb2/3O3–0.15PbTiO3 thin films studied by scanning probe microscopy , 2011 .

[62]  M. Tyunina,et al.  Relaxation of induced polar state in relaxor PbMg1∕3Nb2∕3O3 thin films studied by piezoresponse force microscopy , 2005 .

[63]  G. Shirane,et al.  Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3 , 2003, cond-mat/0308170.

[64]  A. Kholkin,et al.  Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy , 2007 .

[65]  V. Shvartsman,et al.  Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTIO3 single crystals , 2003 .

[66]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[67]  P. Gehring NEUTRON DIFFUSE SCATTERING IN LEAD-BASED RELAXOR FERROELECTRICS AND ITS RELATIONSHIP TO THE ULTRA-HIGH PIEZOELECTRICITY , 2012 .

[68]  G. Samara The Relaxational Properties of Compositionally-Disordered ABO 3 Perovskites , 2002 .

[69]  W. Kleemann Universal Domain Wall Dynamics in Disordered Ferroic Materials , 2007 .

[70]  W. Kleemann RANDOM FIELDS IN RELAXOR FERROELECTRICS — A JUBILEE REVIEW , 2012 .

[71]  V. Shvartsman,et al.  Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy , 2004 .

[72]  K. Hirota,et al.  Neutron and X-ray Scattering Studies of Relaxors , 2006 .

[73]  M. Tyunina,et al.  Dielectric anomalies in epitaxial films of relaxor ferroelectric(PbMg1/3Nb2/3O3)0.68−(PbTiO3)0.32 , 2001 .

[74]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[75]  V. Shvartsman,et al.  Two-dimensional Ising model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions. , 2006, Physical review letters.

[76]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[77]  Exact ground-state properties of disordered Ising systems , 1996, cond-mat/9612022.

[78]  V. Shvartsman,et al.  Spontaneous and induced surface piezoresponse in PbMg1/3Nb2/3O3 single crystals , 2011 .

[79]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[80]  Sergei V. Kalinin,et al.  Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase , 2009 .

[81]  W. Buessem,et al.  Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate , 1966 .

[82]  A. Ievlev,et al.  Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals , 2012 .

[83]  V. Shvartsman,et al.  Polar Structures in Relaxors by Piezoresponse Force Microscopy , 2010 .

[84]  S. Abrahams,et al.  Ferroelectric Tungsten Bronze‐Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78 , 1968 .

[85]  V. Shvartsman,et al.  Ferroelectric-to-relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3 , 2004 .

[86]  Jiangyu Li,et al.  Nanopolar structures and local ferroelectricity of Sr0.61Ba0.39Nb2O6 relaxor crystal across Curie temperature by piezoresponse force microscopy , 2009 .

[87]  G. Weinreich,et al.  Mechanism for the Sidewise Motion of 180° Domain Walls in Barium Titanate , 1960 .

[88]  R. Stosch,et al.  High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5 Ta0.5 O3 and Pb0.78 Ba0.22 Sc0.5 Ta0.5 O3 , 2008 .

[89]  S. Kojima,et al.  Intrinsic and extrinsic central peaks in the Brillouin light scattering spectrum of the uniaxial ferroelectric relaxor Sr0.61Ba0.39Nb2O6 , 2007 .

[90]  W. Kleemann,et al.  Dynamic behavior of polar nanodomains in PbMg1/3Nb2/3O3 , 1997 .

[91]  P. Günter,et al.  Ferroelectric domain structures in PZN–8%PT single crystals studied by scanning force microscopy , 2001 .

[92]  H. Okino,et al.  Cooling-Rate-Dependence of Dielectric Constant and Domain Structures in (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 Single Crystals , 2005 .

[93]  J. Holc,et al.  Effect of grain size on the transition between ferroelectric and relaxor states in0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3ceramics , 2008 .

[94]  Sergei V. Kalinin,et al.  Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors , 2022 .

[95]  R. Pankrath,et al.  Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear birefringence studies of spontaneous and precursor polarization , 2000 .

[96]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[97]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[98]  Joon-Hyung Lee,et al.  Site Occupancy and Dielectric Characteristics of Strontium Barium Niobate Ceramics: Sr/Ba Ratio Dependence , 2002 .

[99]  E. Colla,et al.  Dielectric properties of (PMN)(1−x)(PT)x single crystals for various electrical and thermal histories , 1998 .

[100]  B. Dkhil,et al.  Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor , 2001 .

[101]  C. Choy,et al.  Relaxor ferroelectric characteristics and temperature-dependent domain structure in a (110)-cut(PbMg1∕3Nb2∕3O3)0.75(PbTiO3)0.25single crystal , 2005 .

[102]  L. Ivleva,et al.  The kinetic characteristics of polarization of relaxor ferroelectrics , 2001 .

[103]  L. Ivleva,et al.  Recording of domains and regular domain patterns in strontium–barium niobate crystals in the field of atomic force microscope , 2009 .

[104]  U. Nowak,et al.  Dynamics of domains in diluted antiferromagnets , 1996, cond-mat/9604094.

[105]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[106]  Z. Ye,et al.  Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN] , 1993 .

[107]  F. Bai,et al.  Domain engineered states over various length scales in (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 crystals: Electrical history dependence of hierarchal domains , 2005 .