A broad-spectrum bactericidal lipopeptide with anti-biofilm properties

[1]  Scott D. Taylor,et al.  The action mechanism of daptomycin. , 2016, Bioorganic & medicinal chemistry.

[2]  A. Mor,et al.  Controlling bacterial infections by inhibiting proton-dependent processes. , 2016, Biochimica et biophysica acta.

[3]  T. Camesano,et al.  Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. , 2015, Biochimica et biophysica acta.

[4]  Xuesong He,et al.  Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology , 2015, Proceedings of the National Academy of Sciences.

[5]  A. Mor,et al.  Sensitization of Gram-negative bacteria to rifampin and OAK combinations , 2015, Scientific Reports.

[6]  Hyun Koo,et al.  Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms , 2015, Front. Cell. Infect. Microbiol..

[7]  H. Raja,et al.  ω-Hydroxyemodin Limits Staphylococcus aureus Quorum Sensing-Mediated Pathogenesis and Inflammation , 2015, Antimicrobial Agents and Chemotherapy.

[8]  M. Webber,et al.  Molecular mechanisms of antibiotic resistance , 2014, Nature Reviews Microbiology.

[9]  Bruce S. Edwards,et al.  Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance , 2014, PLoS pathogens.

[10]  Till F Schäberle,et al.  Overcoming the current deadlock in antibiotic research. , 2014, Trends in microbiology.

[11]  Stephen P. Diggle,et al.  Targeting virulence: can we make evolution-proof drugs? , 2014, Nature Reviews Microbiology.

[12]  A. Mor,et al.  Simultaneous breakdown of multiple antibiotic resistance mechanisms in S. aureus , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  R. Epand,et al.  Sensitization of gram‐negative bacteria by targeting the membrane potential , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  Y. Izumi,et al.  An effective technique for the processing of saliva for the analysis of leptin and adiponectin , 2013, Peptides.

[15]  R. Eckert Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. , 2011, Future microbiology.

[16]  Maria Luisa Mangoni,et al.  Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action , 2011, Cellular and Molecular Life Sciences.

[17]  W. Shi,et al.  Selective Membrane Disruption: Mode of Action of C16G2, a Specifically Targeted Antimicrobial Peptide , 2011, Antimicrobial Agents and Chemotherapy.

[18]  W. Bowen,et al.  Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms , 2011, Caries Research.

[19]  W. Shafer,et al.  Lipooligosaccharide Structure is an Important Determinant in the Resistance of Neisseria Gonorrhoeae to Antimicrobial Agents of Innate Host Defense , 2011, Front. Microbio..

[20]  L. Silver Challenges of Antibacterial Discovery , 2011, Clinical Microbiology Reviews.

[21]  L. Hamoen,et al.  Membrane potential is important for bacterial cell division , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Ivankin,et al.  A miniature mimic of host defense peptides with systemic antibacterial efficacy , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  R. Epand,et al.  Probing the "charge cluster mechanism" in amphipathic helical cationic antimicrobial peptides. , 2010, Biochemistry.

[24]  R. Epand,et al.  Design and characterization of a broad -spectrum bactericidal acyl-lysyl oligomer. , 2009, Chemistry & biology.

[25]  R. Epand,et al.  Cell-wall interactions and the selective bacteriostatic activity of a miniature oligo-acyl-lysyl. , 2009, Biophysical journal.

[26]  Martti Vaara,et al.  New approaches in peptide antibiotics. , 2009, Current opinion in pharmacology.

[27]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[28]  A. Mor,et al.  Antimicrobial peptide mimics for improved therapeutic properties. , 2009, Biochimica et biophysica acta.

[29]  B. Kallipolitis,et al.  Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. , 2008, The Journal of antimicrobial chemotherapy.

[30]  D. Danino,et al.  Impact of Self-Assembly Properties on Antibacterial Activity of Short Acyl-Lysine Oligomers , 2008, Antimicrobial Agents and Chemotherapy.

[31]  R. Epand,et al.  Bacterial membranes as predictors of antimicrobial potency. , 2008, Journal of the American Chemical Society.

[32]  M. Takano,et al.  Novel Polymyxin Derivatives Carrying Only Three Positive Charges Are Effective Antibacterial Agents , 2008, Antimicrobial Agents and Chemotherapy.

[33]  Y. Porat,et al.  Structure-activity relationships of antibacterial acyl-lysine oligomers. , 2008, Chemistry & biology.

[34]  Jian Li,et al.  Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. , 2007, The Journal of antimicrobial chemotherapy.

[35]  Y. Shai,et al.  Inhibition of Fungal and Bacterial Plant Pathogens In Vitro and In Planta with Ultrashort Cationic Lipopeptides , 2007, Applied and Environmental Microbiology.

[36]  V. Nizet Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. , 2007, The Journal of allergy and clinical immunology.

[37]  Y. Carmeli,et al.  Improved antimicrobial peptides based on acyl-lysine oligomers , 2007, Nature Biotechnology.

[38]  Y. Shai,et al.  Ultrashort antibacterial and antifungal lipopeptides , 2006, Proceedings of the National Academy of Sciences.

[39]  R. Hancock,et al.  Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. , 2006, Biochimica et biophysica acta.

[40]  Y. Shai,et al.  Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. , 2006, Biochimica et biophysica acta.

[41]  V. Everts,et al.  Role of Polymorphonuclear Leukocyte-Derived Serine Proteinases in Defense against Actinobacillus actinomycetemcomitans , 2006, Infection and Immunity.

[42]  I. Radzishevsky,et al.  Physicochemical Properties That Enhance Discriminative Antibacterial Activity of Short Dermaseptin Derivatives , 2006, Antimicrobial Agents and Chemotherapy.

[43]  Masahiro Ito,et al.  Alkaline pH homeostasis in bacteria: new insights. , 2005, Biochimica et biophysica acta.

[44]  I. Radzishevsky,et al.  Effects of Acyl versus Aminoacyl Conjugation on the Properties of Antimicrobial Peptides , 2005, Antimicrobial Agents and Chemotherapy.

[45]  F. Tally,et al.  Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. , 2005, The Journal of antimicrobial chemotherapy.

[46]  A. Fish,et al.  Analysis of membrane-binding properties of dermaseptin analogues: relationships between binding and cytotoxicity. , 2003, Biochemistry.

[47]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[48]  Göran Carlsson,et al.  Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study , 2002, The Lancet.

[49]  H. Ginsburg,et al.  In Vitro Antiplasmodium Effects of Dermaseptin S4 Derivatives , 2002, Antimicrobial Agents and Chemotherapy.

[50]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[51]  Y. Shai,et al.  Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. , 2001, Biochemistry.

[52]  R. Hancock,et al.  Interactions of Bacterial Cationic Peptide Antibiotics with Outer and Cytoplasmic Membranes ofPseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[53]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[54]  W. Shafer,et al.  Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Jones Chlorhexidine: is it still the gold standard? , 1997, Periodontology 2000.

[56]  M. Addy,et al.  Clinical indications for the use of chemical adjuncts to plaque control: chlorhexidine formulations. , 1997, Periodontology 2000.

[57]  M. Barkley,et al.  Self-assembly of designed antimicrobial peptides in solution and micelles. , 1997, Biochemistry.

[58]  R. Hancock,et al.  Peptide antibiotics , 1997, The Lancet.

[59]  M. Saarela,et al.  Chlorhexidine susceptibilities of mutans streptococcal serotypes and ribotypes , 1995, Antimicrobial agents and chemotherapy.

[60]  T. A. Krulwich,et al.  Reconstitution of energy-linked activities of the solubilized F1F0 ATP synthase from Bacillus subtilis , 1994, Journal of bacteriology.

[61]  H. Goodman,et al.  A review of chlorhexidine and its use in special populations. , 1994, Special care in dentistry : official publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry.

[62]  H V Westerhoff,et al.  Magainins and the disruption of membrane-linked free-energy transduction. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Ganz,et al.  Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. , 1988, Journal of immunological methods.

[64]  W. Loesche Role of Streptococcus mutans in human dental decay. , 1986, Microbiological reviews.

[65]  O. Fardal,et al.  A review of the literature on use of chlorhexidine in dentistry. , 1986, Journal of the American Dental Association.

[66]  G. Greenstein,et al.  Chlorhexidine. An adjunct to periodontal therapy. , 1986, Journal of periodontology.

[67]  R. Hancock,et al.  Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin , 1986, Antimicrobial Agents and Chemotherapy.

[68]  H. Sahl,et al.  Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles , 1985, Antimicrobial Agents and Chemotherapy.

[69]  I. Chopra,et al.  Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections , 2010, Nature Reviews Microbiology.

[70]  G. Tew,et al.  Synthetic mimics of antimicrobial peptides. , 2008, Biopolymers.

[71]  Y. Fa Polymyxin B for the treatment of multidrug-resistant pathogens:a critical review , 2008 .

[72]  U. Cogan,et al.  In vitro discriminative antipseudomonal properties resulting from acyl substitution of N-terminal sequence of dermaseptin s4 derivatives. , 2007, Chemistry & biology.

[73]  D. Storm,et al.  Polymyxin and related peptide antibiotics. , 1977, Annual review of biochemistry.

[74]  M. Kerker Analysis of Particle Size , 1969 .

[75]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[76]  D. Gompertz Microbial Lipids , 1967, Nature.