Connecting the Lorenz and Chen systems via nonlinear control
暂无分享,去创建一个
[1] Fei Xu,et al. A Common Phenomenon in Chaotic Systems Linked by Time Delay , 2006, Int. J. Bifurc. Chaos.
[2] Ahmed S. Elwakil,et al. Creation of a complex butterfly attractor using a novel Lorenz-Type system , 2002 .
[3] Pei Yu,et al. New Estimations for Globally Attractive and Positive Invariant Set of the Family of the Lorenz Systems , 2006, Int. J. Bifurc. Chaos.
[4] Guanrong Chen,et al. A note on the fractional-order Chen system , 2006 .
[5] Daizhan Cheng,et al. A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.
[6] Guanrong Chen,et al. The compound structure of a new chaotic attractor , 2002 .
[7] Guanrong Chen,et al. Controlling in between the Lorenz and the Chen Systems , 2002, Int. J. Bifurc. Chaos.
[8] Sergej Celikovský,et al. Bilinear systems and chaos , 1994, Kybernetika.
[9] Guanrong Chen,et al. The Compound Structure of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.
[10] Guanrong Chen,et al. Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.
[11] Chongxin Liu,et al. A new chaotic attractor , 2004 .
[12] Lu Jinhu,et al. Asymptotic Analysis of a Modified Lorenz System , 2002 .
[13] 李德权. Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system , 2006 .
[14] Guanrong Chen,et al. Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.
[15] Dequan Li,et al. A three-scroll chaotic attractor , 2008 .
[16] Martin Hasler,et al. Stable Stationary Solutions in Reaction-diffusion Systems Consisting of a 1-d Array of Bistable Cells , 2002, Int. J. Bifurc. Chaos.
[17] Guanrong Chen,et al. On the generalized Lorenz canonical form , 2005 .
[18] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[19] Guanrong Chen,et al. Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.
[20] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[21] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[22] A universal unfolding of the Lorenz system , 2004 .
[23] Guanrong Chen,et al. Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.
[24] S. Čelikovský,et al. Control systems: from linear analysis to synthesis of chaos , 1996 .
[25] Ahmed S. Elwakil,et al. Experimental Verification of the Butterfly Attractor in a Modified Lorenz System , 2002, Int. J. Bifurc. Chaos.
[26] Pei Yu,et al. Globally Attractive and Positive Invariant Set of the Lorenz System , 2006, Int. J. Bifurc. Chaos.
[27] Dequan Li,et al. TS fuzzy realization of chaotic Lü system , 2006 .
[28] Ahmed S. Elwakil,et al. A Four-Wing Butterfly Attractor from a Fully Autonomous System , 2003, Int. J. Bifurc. Chaos.
[29] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[30] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[31] Guanrong Chen,et al. A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.
[32] GUANRONG CHEN,et al. Four-Wing attractors: from Pseudo to Real , 2006, Int. J. Bifurc. Chaos.