On the number of inequivalent Gabidulin codes

Maximum rank-distance (MRD) codes are extremal codes in the space of $$m\times n$$m×n matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. This shows in particular that the family of Gabidulin codes already contains a huge subset of MRD codes that are pairwise inequivalent, provided that $$2\leqslant m\leqslant n-2$$2⩽m⩽n-2.

[1]  Rod Gow,et al.  GALOIS EXTENSIONS AND SUBSPACES OF ALTERNATING BILINEAR FORMS WITH SPECIAL RANK PROPERTIES , 2009 .

[2]  Nicola Durante,et al.  A generalization of the normal rational curve in $$\mathop {\mathrm{PG}}(d,q^n)$$PG(d,qn) and its associated non-linear MRD codes , 2018, Des. Codes Cryptogr..

[3]  W. Kantor,et al.  Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads , 2013, 1303.4073.

[4]  Rocco Trombetti,et al.  Nuclei and automorphism groups of generalized twisted Gabidulin codes , 2016, Linear Algebra and its Applications.

[5]  Hiroaki Taniguchi,et al.  A unified description of four simply connected dimensional dual hyperovals , 2014, Eur. J. Comb..

[6]  Alessandro Neri,et al.  On the genericity of maximum rank distance and Gabidulin codes , 2016, Des. Codes Cryptogr..

[7]  Ulrich Dempwolff,et al.  Dimensional dual hyperovals and APN functions with translation groups , 2014 .

[8]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[9]  Z. Wan,et al.  Geometry of Matrices , 1996 .

[10]  Katherine Morrison,et al.  Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.

[11]  Rod Gow,et al.  Galois theory and linear algebra , 2009 .

[12]  Rocco Trombetti,et al.  On kernels and nuclei of rank metric codes , 2016, ArXiv.

[13]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  W. Kantor Finite semifields , 2005 .

[15]  B. Huppert Endliche Gruppen I , 1967 .

[16]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[17]  Anna-Lena Horlemann-Trautmann,et al.  New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions , 2015, Adv. Math. Commun..

[18]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[19]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[20]  Gabriele Nebe,et al.  Automorphism groups of Gabidulin-like codes , 2016, ArXiv.

[21]  Nicola Durante,et al.  Non-Linear Maximum Rank Distance Codes in the Cyclic Model for the Field Reduction of Finite Geometries , 2017, Electron. J. Comb..

[22]  Giuseppe Marino,et al.  Maximum scattered linear sets and MRD-codes , 2017, 1701.06831.

[23]  Z. Wan,et al.  Geometry of Matrices: In Memory of Professor L K Hua (1910 – 1985) , 1996 .

[24]  Giuseppe Marino,et al.  Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..

[25]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[26]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2015, Adv. Math. Commun..

[27]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.