Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity

Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017) are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG) wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical) g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.

[1]  D. Saunders The Geometry of Jet Bundles , 1989 .

[2]  Multivector field formulation of Hamiltonian field theories: equations and symmetries , 1999, math-ph/9907007.

[3]  Charles W. Misner,et al.  重力理論 : gravitation--古典力学から相対性理論まで, 時空の幾何学から宇宙の構造へ , 2011 .

[4]  D. Raine General relativity , 1980, Nature.

[5]  Exact solutions with noncommutative symmetries in Einstein and gauge gravity , 2003, gr-qc/0307103.

[6]  C. Cremaschini,et al.  Quantum theory of extended particle dynamics in the presence of EM radiation-reaction , 2015 .

[7]  G. Sardanashvily Generalized Hamiltonian Formalism For Field Theory , 1995 .

[8]  C. Cremaschini,et al.  Hamiltonian formulation for the classical EM radiation-reaction problem: Application to the kinetic theory for relativistic collisionless plasmas , 2011, 1201.1816.

[9]  C. Cremaschini,et al.  Statistical treatment of the electromagnetic radiation-reaction problem: Evaluation of the relativistic Boltzmann-Shannon entropy , 2013 .

[10]  C. Cremaschini,et al.  Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions , 2012, 1201.1826.

[11]  C. Cremaschini,et al.  Hamiltonian approach to GR – Part 1: covariant theory of classical gravity , 2016, 1609.04426.

[12]  C. Cremaschini,et al.  Theory of Nonlocal Point Transformations in General Relativity , 2016 .

[13]  C. Cremaschini,et al.  Exact solution of the EM radiation-reaction problem for classical finite-size and Lorentzian charged particles , 2011, 1201.1817.

[14]  Inverse kinetic theory for quantum hydrodynamic equations , 2006, quant-ph/0606091.

[15]  M. Mond,et al.  Hamiltonian Structure of the Schrödinger Classical Dynamical System , 2016 .

[16]  C. Ross Found , 1869, The Dental register.

[17]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[18]  C. Cremaschini,et al.  Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics , 2016 .

[19]  D. Minic,et al.  What is Quantum Theory of Gravity , 2004, hep-th/0401028.

[20]  I. V. Kanatchikov Canonical structure of classical field theory in the polymomentum phase space , 1998 .

[21]  C. Cremaschini,et al.  Manifest Covariant Hamiltonian Theory of General Relativity , 2016, 1609.04422.

[22]  Jacques E. Romain,et al.  Gravitation: An Introduction to Current Research , 1963 .

[23]  THE POISSON BRACKET FOR POISSON FORMS IN MULTISYMPLECTIC FIELD THEORY , 2002, math-ph/0202043.

[24]  C. Cremaschini,et al.  Synchronous Lagrangian variational principles in General Relativity , 2015, 1609.04418.

[25]  Geometry of Lagrangian First-order Classical Field Theories , 1995, dg-ga/9505004.

[26]  p-mechanics as a physical theory: an introduction , 2002, quant-ph/0212101.

[27]  S. Vacaru,et al.  Perelman's W--entropy and Statistical and Relativistic Thermodynamic Description of Gravitational Fields , 2013 .

[28]  Z. Etienne,et al.  Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation , 2010, 1007.2848.

[29]  D. Bailin Field theory , 1979, Nature.

[30]  James B. Hartle,et al.  Wave Function of the Universe , 1983 .

[31]  C. Cremaschini,et al.  Hamiltonian approach to GR – Part 2: covariant theory of quantum gravity , 2016, 1609.04428.

[32]  A. Einstein The Meaning of Relativity , 1946 .

[33]  Miguel Alcubierre,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[34]  A. Redelbach,et al.  Covariant Hamiltonian Field Theory , 2008, 0811.0508.

[35]  S. Vacaru,et al.  Off-diagonal deformations of kerr black holes in Einstein and modified massive gravity and higher dimensions , 2013, 1312.4844.

[36]  I. Kanatchikov From the DeDonder-Weyl Hamiltonian formalism to quantization of Gravity , 1998, gr-qc/9810076.