Hydrothermally obtained β-MnO2 Nanoparticles/Activated Carbonized Coconut Fibers Composites, Electrochemical Properties Study for Future Energy Storage Devices

[1]  R. Rajendran,et al.  Facile synthesis and characterization of MnO2/MWCNT nanocomposites for high-performance asymmetric supercapacitor , 2022, Ionics.

[2]  P. Almodóvar,et al.  Influence of MnO2-Birnessite Microstructure on the Electrochemical Performance of Aqueous Zinc Ion Batteries , 2022, Applied Sciences.

[3]  Shaohua Liu,et al.  Sandwich-like Nitrogen-Doped Porous Carbon Nanosheet/MnO2 Nanosheet Composites for Asymmetric Supercapacitors , 2021, ACS Applied Nano Materials.

[4]  Abdul Rehman Akbar,et al.  Fabrication of porous carbon nanofibril/MnO2 composite aerogels from TEMPO-oxidized cellulose nanofibrils for high-performance supercapacitors , 2021 .

[5]  E. Swatsitang,et al.  Synthesis, characterization and electrochemical properties of activated coconut fiber carbon (ACFC) and CuO/ACFC nanocomposites for applying as electrodes of supercapacitor devices , 2021 .

[6]  M. S. Sivaramkumar,et al.  Heteroatom-doped mesoporous carbon prepared from a covalent organic framework/α-MnO2 composite for high-performance supercapacitor , 2021, Carbon Letters.

[7]  Zeng Fan,et al.  Three-dimensional porous reduced graphene oxide/PEDOT:PSS aerogel: Facile preparation and high performance for supercapacitor electrodes , 2020 .

[8]  Zhifeng Hao,et al.  Biobased alkyd/graphene oxide decorated with β–MnO2 nanorods as a robust ternary nanocomposite for surface coating , 2020 .

[9]  Sejoon Lee,et al.  Upcycling of Wastewater via Effective Photocatalytic Hydrogen Production Using MnO2 Nanoparticles—Decorated Activated Carbon Nanoflakes , 2020, Nanomaterials.

[10]  K. Oyedotun,et al.  Hybrid electrochemical supercapacitor based on birnessite-type MnO2/carbon composite as the positive electrode and carbonized iron-polyaniline/nickel graphene foam as a negative electrode , 2020, AIP Advances.

[11]  Y. Domi,et al.  Impacts of MnO2 Crystal Structures and Fe Doping in Those on Photoelectrochemical Charge–Discharge Properties of TiO2/MnO2 Composite Electrodes , 2020 .

[12]  A. Policicchio,et al.  Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage , 2020, Energies.

[13]  B. Zhang,et al.  Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater , 2020 .

[14]  Jianbo Jia,et al.  Manganous nitrate -assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes , 2020 .

[15]  Y. Huh,et al.  Electroactive Ultra-Thin rGO-Enriched FeMoO4 Nanotubes and MnO2 Nanorods as Electrodes for High-Performance All-Solid-State Asymmetric Supercapacitors , 2020, Nanomaterials.

[16]  Jie Dong,et al.  Synthesis and Characterization of Nickel-doped Manganese Dioxide Electrode Materials for Supercapacitors , 2019, E3S Web of Conferences.

[17]  Xing Wu,et al.  A new strategy for synthesis of hierarchical MnO2–Mn3O4 nanocomposite via reduction-induced exfoliation of MnO2 nanowires and its application in high-performance asymmetric supercapacitor , 2019 .

[18]  Xiaohui Wang,et al.  MnO2@Corncob Carbon Composite Electrode and All-Solid-State Supercapacitor with Improved Electrochemical Performance , 2019, Materials.

[19]  S. Gunasekaran,et al.  MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors , 2019, ACS Applied Nano Materials.

[20]  D. Xiong,et al.  Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance , 2019, Journal of the Taiwan Institute of Chemical Engineers.

[21]  You Yang Improving the Rate Performance of Manganese Dioxide by Doping with Cu2+, Co2+ and Ni2+ ions , 2019, International Journal of Electrochemical Science.

[22]  Hongzhou Dong,et al.  One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage , 2019, Journal of Electroanalytical Chemistry.

[23]  Yan Liang,et al.  Coconut-based activated carbon fibers for efficient adsorption of various organic dyes , 2018, RSC advances.

[24]  S. Chou,et al.  Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials. , 2018, Small.

[25]  F. Lufrano,et al.  Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes , 2018 .

[26]  V. Amornkitbamrung,et al.  A comparative study of MnO2 and composite MnO2–Ag nanostructures prepared by a hydrothermal technique on supercapacitor applications , 2018, Journal of Materials Science: Materials in Electronics.

[27]  Xiaoyan Zhang,et al.  Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes , 2017 .

[28]  Xiaojuan Jin,et al.  High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor , 2017, Scientific Reports.

[29]  E. Timofeeva,et al.  Controlled synthesis of MnO2 nanoparticles for aqueous battery cathodes: polymorphism–capacity correlation , 2017, Journal of Materials Science.

[30]  H. Che,et al.  Urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance supercapacitor electrode , 2017, Journal of Applied Electrochemistry.

[31]  Yang Ren Preparation of Porous Carbon-Manganese Dioxide Nanocomposite as a Supercapacitor Electrode , 2016 .

[32]  K. Lu,et al.  Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide , 2016 .

[33]  P. Sáha,et al.  Ultrathin MnO2 nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors , 2015 .

[34]  Jingli Xu,et al.  Synthesis and Electrochemical Characterization of Mesoporous MnO2 , 2015 .

[35]  Jaehoon Kim,et al.  Effect of KOH on the continuous synthesis of cobalt oxide and manganese oxide nanoparticles in supercritical water , 2014 .

[36]  S. Nguyen,et al.  Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications , 2014 .

[37]  Yong Zhang,et al.  Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube , 2014 .

[38]  Myeongjin Kim,et al.  Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. , 2014, Physical chemistry chemical physics : PCCP.

[39]  Qing Liu,et al.  Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors , 2014, Scientific Reports.

[40]  Lunhui Guan,et al.  Enhanced electrochemical performance of MWNT@MnO2 composites in polymerized ionic liquids. , 2013, Physical chemistry chemical physics : PCCP.

[41]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[42]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[43]  Changzhong Chen,et al.  A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries , 2013 .

[44]  Nawawi Chouw,et al.  Mechanical and dynamic properties of coconut fibre reinforced concrete , 2012 .

[45]  Li Lu,et al.  Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors , 2012, Nanoscale Research Letters.

[46]  Yan Jingwang,et al.  Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors , 2011 .

[47]  Lian Gao,et al.  Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method , 2007 .

[48]  Kenji Umemura,et al.  Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles , 2007, Journal of Wood Science.

[49]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[50]  Xiaodong Hong,et al.  Electrochemical Performance of Mno2/Graphene Flower-Like Microspheres Prepared by Thermally- Exfoliated Graphite , 2022, Social Science Research Network.

[51]  S. Chakrabarti,et al.  Synthesis of MnO2 nano-flakes for high performance supercapacitor application , 2020 .

[52]  N. Mizuno,et al.  Molybdenum-doped α-MnO2 as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation , 2016 .