Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii

[1]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[2]  Suzanne R. Thibodeaux,et al.  TgMAPK1 is a Toxoplasma gondii MAP kinase that hijacks host MKK3 signals to regulate virulence and interferon-γ-mediated nitric oxide production. , 2013, Experimental parasitology.

[3]  Quan Liu,et al.  Protein kinases of Toxoplasma gondii: functions and drug targets , 2013, Parasitology Research.

[4]  Kami Kim,et al.  The Toxoplasma nuclear factor TgAP2XI‐4 controls bradyzoite gene expression and cyst formation , 2013, Molecular microbiology.

[5]  P. Lescault,et al.  Disruption of the Expression of a Non-Coding RNA Significantly Impairs Cellular Differentiation in Toxoplasma gondii , 2012, International journal of molecular sciences.

[6]  G. Brooks,et al.  Host metabolism regulates growth and differentiation of Toxoplasma gondii. , 2012, International journal for parasitology.

[7]  M. Eshragian,et al.  Real-Time RT-PCR on SAG1 and BAG1 Gene Expression during Stage Conversion in Immunosuppressed Mice Infected with Toxoplasma gondii Tehran Strain , 2012, The Korean journal of parasitology.

[8]  A. Gingras,et al.  High-Resolution Protein Interaction Map of the Drosophila melanogaster p38 Mitogen-Activated Protein Kinases Reveals Limited Functional Redundancy , 2012, Molecular and Cellular Biology.

[9]  D. Roos,et al.  Targeted Disruption of Toxoplasma gondii Serine Protease Inhibitor 1 Increases Bradyzoite Cyst Formation In Vitro and Parasite Tissue Burden in Mice , 2011, Infection and Immunity.

[10]  M. Lisanti,et al.  Molecular cloning and characterization of mitogen-activated protein kinase 2 in Toxoplasma gondii , 2011, Cell cycle.

[11]  P. Rossitto,et al.  Toxoplasma in animals, food, and humans: an old parasite of new concern. , 2011, Foodborne pathogens and disease.

[12]  M. J. Hickman,et al.  The Hog1 Mitogen-Activated Protein Kinase Mediates a Hypoxic Response in Saccharomyces cerevisiae , 2011, Genetics.

[13]  L. Knoll,et al.  Involvement of a Toxoplasma gondii Chromatin Remodeling Complex Ortholog in Developmental Regulation , 2011, PloS one.

[14]  Tyler J. Curiel,et al.  Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens , 2011, Journal of signal transduction.

[15]  A. Cuadrado,et al.  Mechanisms and functions of p38 MAPK signalling. , 2010, The Biochemical journal.

[16]  Sini Skariah,et al.  Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion , 2010, Parasitology Research.

[17]  P. Pescher,et al.  Leishmania major MPK7 Protein Kinase Activity Inhibits Intracellular Growth of the Pathogenic Amastigote Stage , 2009, Eukaryotic Cell.

[18]  S. Burchill,et al.  p38(MAPK): stress responses from molecular mechanisms to therapeutics. , 2009, Trends in molecular medicine.

[19]  J P Dubey,et al.  History of the discovery of the life cycle of Toxoplasma gondii. , 2009, International journal for parasitology.

[20]  L. Sibley,et al.  Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. , 2009, Cell host & microbe.

[21]  Y. Takashima,et al.  Visualization of Toxoplasma gondii stage conversion by expression of stage-specific dual fluorescent proteins , 2009, Parasitology.

[22]  Matthew Z. Anderson,et al.  A Pseudouridine Synthase Homologue Is Critical to Cellular Differentiation in Toxoplasma gondii , 2009, Eukaryotic Cell.

[23]  A. Crisanti,et al.  Temporal and Spatial Distribution of Toxoplasma gondii Differentiation into Bradyzoites and Tissue Cyst Formation In Vivo , 2008, Infection and Immunity.

[24]  J. Boothroyd,et al.  A Cluster of Four Surface Antigen Genes Specifically Expressed in Bradyzoites, SAG2CDXY, Plays an Important Role in Toxoplasma gondii Persistence , 2008, Infection and Immunity.

[25]  H. Low,et al.  Pfnek3 functions as an atypical MAPKK in Plasmodium falciparum. , 2007, Biochemical and biophysical research communications.

[26]  S. Reed,et al.  Cathepsin Cs Are Key for the Intracellular Survival of the Protozoan Parasite, Toxoplasma gondii* , 2007, Journal of Biological Chemistry.

[27]  T. Sim,et al.  Pfnek3: An atypical activator of a MAP kinase in Plasmodium falciparum , 2006, FEBS letters.

[28]  U. Groß,et al.  Disruption of the bradyzoite-specific P-type (H+)-ATPase PMA1 in Toxoplasma gondii leads to decreased bradyzoite differentiation after stress stimuli but does not interfere with mature tissue cyst formation. , 2006, Molecular and biochemical parasitology (Print).

[29]  J. Boothroyd,et al.  Disruption of a Locus Encoding a Nucleolar Zinc Finger Protein Decreases Tachyzoite-to-Bradyzoite Differentiation in Toxoplasma gondii , 2005, Infection and Immunity.

[30]  Daniel Kuhn,et al.  LmxPK4, a mitogen‐activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation , 2005, Molecular microbiology.

[31]  M. Mortuaire,et al.  Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Toxoplasma gondii , 2005, Nucleic acids research.

[32]  S. Picot,et al.  Evaluation of a Real-time PCR-based assay using the lightcycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. , 2005, International journal for parasitology.

[33]  Daniel Kuhn,et al.  LmxMPK9, a mitogen‐activated protein kinase homologue affects flagellar length in Leishmania mexicana , 2005, Molecular microbiology.

[34]  M. Lacey,et al.  Identification of a novel mitogen-activated protein kinase in Toxoplasma gondii. , 2004, International journal for parasitology.

[35]  D. Roos,et al.  Dynamics of Toxoplasma gondii Differentiation , 2004, Eukaryotic Cell.

[36]  L. Sibley,et al.  Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2–M2AP adhesive protein complex , 2003, The EMBO journal.

[37]  R. Chakrabarti,et al.  Potential Involvement of Extracellular Signal-regulated Kinase 1 and 2 in Encystation of a Primitive Eukaryote, Giardia lamblia , 2003, The Journal of Biological Chemistry.

[38]  G. Johnson,et al.  Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases , 2002, Science.

[39]  K. Heidenreich,et al.  Pyridinylimidazole p38 mitogen-activated protein kinase inhibitors block intracellular Toxoplasma gondii replication. , 2002, International Journal of Parasitology.

[40]  R. Lyons,et al.  Toxoplasma gondii tachyzoite-bradyzoite interconversion. , 2002, Trends in parasitology.

[41]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[42]  L. Weiss,et al.  Toxoplasma gondii: from animals to humans. , 2000, International journal for parasitology.

[43]  M. Roisin,et al.  Biochemical characterization of mitogen-activated protein (MAP) kinase activity in Toxoplasma gondii , 2000, Parasitology Research.

[44]  Kami Kim,et al.  The development and biology of bradyzoites of Toxoplasma gondii. , 2000, Frontiers in bioscience : a journal and virtual library.

[45]  B. A. Fox,et al.  Stable transformation of Toxoplasma gondii based on a pyrimethamine resistant trifunctional dihydrofolate reductase-cytosine deaminase-thymidylate synthase gene that confers sensitivity to 5-fluorocytosine. , 1999, Molecular and biochemical parasitology.

[46]  J. Dubey,et al.  Advances in the life cycle of Toxoplasma gondii. , 1998, International journal for parasitology.

[47]  J. Dubremetz,et al.  Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. , 1994, Experimental parasitology.

[48]  D. Roos,et al.  Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Boothroyd,et al.  Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. , 1993, Science.

[50]  Rony Seger,et al.  The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. , 2010, Methods in molecular biology.

[51]  Kami Kim,et al.  Cyclic nucleotide kinases and tachyzoite-bradyzoite transition in Toxoplasma gondii. , 2006, International journal for parasitology.

[52]  M. Lacey,et al.  Toxoplasma gondii Expresses Two Mitogen-Activated Protein Kinase Genes That Represent Distinct Protozoan Subfamilies , 2005, Journal of Molecular Evolution.

[53]  S. Kyosseva Mitogen-activated protein kinase signaling. , 2004, International review of neurobiology.

[54]  C. Widmann,et al.  Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. , 1999, Physiological reviews.