A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior

An organism's ability to thrive in changing environmental conditions requires the capacity for making flexible behavioral responses. Here we show that, in the nematode Caenorhabditis elegans, foraging responses to changes in food availability require nlp-12, a homolog of the mammalian neuropeptide cholecystokinin (CCK). nlp-12 expression is limited to a single interneuron (DVA) that is postsynaptic to dopaminergic neurons involved in food-sensing, and presynaptic to locomotory control neurons. NLP-12 release from DVA is regulated through the D1-like dopamine receptor DOP-1, and both nlp-12 and dop-1 are required for normal local food searching responses. nlp-12/CCK overexpression recapitulates characteristics of local food searching, and DVA ablation or mutations disrupting muscle acetylcholine receptor function attenuate these effects. Conversely, nlp-12 deletion reverses behavioral and functional changes associated with genetically enhanced muscle acetylcholine receptor activity. Thus, our data suggest that dopamine-mediated sensory information about food availability shapes foraging in a context-dependent manner through peptide modulation of locomotory output.

[1]  I. Soltesz,et al.  Cholecystokinin: A multi‐functional molecular switch of neuronal circuits , 2011, Developmental neurobiology.

[2]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  J. Kaplan,et al.  The EGL-21 Carboxypeptidase E Facilitates Acetylcholine Release at Caenorhabditis elegans Neuromuscular Junctions , 2003, The Journal of Neuroscience.

[4]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[5]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[6]  W. Schafer,et al.  Genes affecting sensitivity to serotonin in Caenorhabditis elegans. , 1996, Genetics.

[7]  P. Sternberg,et al.  A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue , 2006, Nature.

[8]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Khakh,et al.  Point mutant mice with hypersensitive α4 nicotinic receptors show dopaminergic deficits and increased anxiety , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[11]  S. Ishiura,et al.  Identification of a dopamine receptor from Caenorhabditis elegans , 2002, Neuroscience Letters.

[12]  Lixin Tang,et al.  Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors , 1995, Nature.

[13]  Michael R Koelle,et al.  Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans , 2004, Nature Neuroscience.

[14]  J. Rehfeld,et al.  The biology of cholecystokinin and gastrin peptides. , 2007, Current topics in medicinal chemistry.

[15]  Evan Z. Macosko,et al.  Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans , 2013, Cell.

[16]  J. Lewis,et al.  Levamisole-resitant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors , 1980, Neuroscience.

[17]  E A Barnard,et al.  Caenorhabditis elegans Levamisole Resistance Geneslev-1, unc-29, and unc-38 Encode Functional Nicotinic Acetylcholine Receptor Subunits , 1997, The Journal of Neuroscience.

[18]  A. V. Maricq,et al.  Electrophysiological analysis of neuronal and muscle function in C. elegans. , 2006, Methods in molecular biology.

[19]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[20]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[21]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[22]  Evan Z. Macosko,et al.  Oxytocin/Vasopressin-Related Peptides Have an Ancient Role in Reproductive Behavior , 2012, Science.

[23]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  A. C. Collins,et al.  Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization , 2004, Science.

[25]  H. Horvitz,et al.  EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE , 1983 .

[26]  A. V. Maricq,et al.  Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans , 2004, The Journal of Neuroscience.

[27]  J. Kaplan,et al.  PKC-1 regulates secretion of neuropeptides , 2007, Nature Neuroscience.

[28]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[29]  Michael P Nusbaum,et al.  Neuropeptide modulation of microcircuits , 2012, Current Opinion in Neurobiology.

[30]  A. V. Maricq,et al.  The Ror Receptor Tyrosine Kinase CAM-1 Is Required for ACR-16-Mediated Synaptic Transmission at the C. elegans Neuromuscular Junction , 2005, Neuron.

[31]  P. Taghert,et al.  Peptide Neuromodulation in Invertebrate Model Systems , 2012, Neuron.

[32]  Yutaka Kirino,et al.  State-Dependent Sensory Gating in Olfactory Cortex , 2005, Neuron.

[33]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Subhajyoti De,et al.  Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans , 2007, Neuron.

[35]  Andrew K. Jones,et al.  The Caenorhabditis elegans unc-63 Gene Encodes a Levamisole-sensitive Nicotinic Acetylcholine Receptor α Subunit* , 2004, Journal of Biological Chemistry.

[36]  H. Horvitz,et al.  Genes required for GABA function in Caenorhabditis elegans , 1993, Nature.

[37]  K. Wani,et al.  Coexpressed D1- and D2-Like Dopamine Receptors Antagonistically Modulate Acetylcholine Release in Caenorhabditis elegans , 2011, Genetics.

[38]  Mario de Bono,et al.  Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. , 2009, Cell metabolism.

[39]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[40]  Belinda Barbagallo,et al.  ACR-12 Ionotropic Acetylcholine Receptor Complexes Regulate Inhibitory Motor Neuron Activity in Caenorhabditis elegans , 2013, The Journal of Neuroscience.

[41]  David J. Anderson,et al.  Visualizing Neuromodulation In Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing , 2012, Cell.

[42]  J. Kaplan,et al.  A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in Neurotransmitter Release , 2011, Neuron.

[43]  Liliane Schoofs,et al.  Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC‐2/EGL‐3): mutant analysis by mass spectrometry , 2006, Journal of neurochemistry.

[44]  J. Kaplan,et al.  The EGL-3 Proprotein Convertase Regulates Mechanosensory Responses of Caenorhabditis elegans , 2001, The Journal of Neuroscience.

[45]  C S Rubin,et al.  Origin, properties, and regulated expression of multiple mRNAs encoded by the protein kinase C1 gene of Caenorhabditis elegans. , 1994, The Journal of biological chemistry.

[46]  Yishi Jin,et al.  Neuropeptides Function in a Homeostatic Manner to Modulate Excitation-Inhibition Imbalance in C. elegans , 2013, PLoS genetics.

[47]  S. Ishiura,et al.  Cloning and characterization of a Caenorhabditis elegans D2‐like dopamine receptor , 2003, Journal of neurochemistry.

[48]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[49]  D. K. Meyer,et al.  Dopamine modulates cholecystokinin release in neostriatum , 1983, Nature.

[50]  Liliane Schoofs,et al.  Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. , 2008, Endocrinology.

[51]  Stephen E. Von Stetina,et al.  acr-16 Encodes an Essential Subunit of the Levamisole-resistant Nicotinic Receptor at the Caenorhabditis elegans Neuromuscular Junction* , 2005, Journal of Biological Chemistry.

[52]  N. A. Croll Components and patterns in the behaviour of the nematode Caenorhabditis elegans , 2009 .

[53]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[54]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[55]  P. Sengupta,et al.  The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses , 2013, Current Opinion in Neurobiology.

[56]  T. Wakabayashi,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. , 2004, Neuroscience research.

[57]  D. Bush,et al.  Cholecystokinin modulation of mesolimbic dopamine function: regulation of motivated behaviour. , 2002, Pharmacology & toxicology.

[58]  Liliane Schoofs,et al.  Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL‐21)‐deficient Caenorhabditis elegans as analyzed by mass spectrometry , 2007, Journal of neurochemistry.

[59]  J. Bessereau,et al.  Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor , 2008, Proceedings of the National Academy of Sciences.

[60]  David B Sattelle,et al.  The Caenorhabditis elegans lev‐8 gene encodes a novel type of nicotinic acetylcholine receptor α subunit , 2005, Journal of neurochemistry.

[61]  J. Camp,et al.  The CCK(-like) receptor in the animal kingdom: Functions, evolution and structures , 2011, Peptides.

[62]  H. Schiöth,et al.  The Repertoire of G-Protein–Coupled Receptors in Fully Sequenced Genomes , 2005, Molecular Pharmacology.

[63]  D. van der Kooy,et al.  Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans , 2004, The EMBO journal.

[64]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[65]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[66]  C. Johnson,et al.  Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. , 1995, Genetics.

[67]  Jan-Marino Ramirez,et al.  State-Dependent Interactions between Excitatory Neuromodulators in the Neuronal Control of Breathing , 2010, The Journal of Neuroscience.

[68]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. P. Nusbaum,et al.  Hormonal Modulation of Sensorimotor Integration , 2010, The Journal of Neuroscience.

[70]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[71]  J. Changeux,et al.  Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor , 1991, Nature.

[72]  E Marder,et al.  A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[74]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.