Neutrosophic cubic (α, β)-ideals in semigroups with application

[1]  Young Bae Jun,et al.  Semigroups characterized by (C,C,νqk)-fuzzy ideals , 2010 .

[2]  Chong Liu,et al.  Algorithms for neutrosophic soft decision making based on EDAS, new similarity measure and level soft set , 2018, J. Intell. Fuzzy Syst..

[3]  S. Abdullah,et al.  $$({\alpha ,\beta })$$(α,β)-Intuitionistic fuzzy bi-ideals of semigroups , 2017 .

[4]  Florentin Smarandache,et al.  A unifying field in logics : neutrosophic logic : neutrosophy, neutrosophic set, neutrosophic probability , 2020 .

[5]  S. K. Bhakat,et al.  Fuzzy subrings and ideals redefined , 1996, Fuzzy Sets Syst..

[6]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[7]  Zhang-peng Tian,et al.  Hybrid single-valued neutrosophic MCGDM with QFD for market segment evaluation and selection , 2018, J. Intell. Fuzzy Syst..

[8]  Young Bae Jun,et al.  Characterizations of regular semigroups by (alpha, beta)-fuzzy ideals , 2010, Comput. Math. Appl..

[9]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[10]  Hong-yu Zhang,et al.  Frank Choquet Bonferroni Mean Operators of Bipolar Neutrosophic Sets and Their Application to Multi-criteria Decision-Making Problems , 2018, Int. J. Fuzzy Syst..

[11]  Xindong Peng,et al.  Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function , 2018, Neural Computing and Applications.

[12]  Sandeep Kumar Bhakat,et al.  (ε ∨ Q)-level Subset , 1999, Fuzzy Sets Syst..

[13]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[14]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[15]  Xindong Peng,et al.  ALGORITHMS FOR INTERVAL NEUTROSOPHIC MULTIPLE ATTRIBUTE DECISION-MAKING BASED ON MABAC, SIMILARITY MEASURE, AND EDAS , 2018 .

[16]  Venkat Murali,et al.  Fuzzy points of equivalent fuzzy subsets , 2004, Inf. Sci..

[17]  Young Bae Jun,et al.  The generalized version of Jun's cubic sets in semigroups , 2015, J. Intell. Fuzzy Syst..

[18]  Young Bae Jun,et al.  Generalized fuzzy interior ideals in semigroups , 2006, Inf. Sci..

[19]  Young Bae Jun,et al.  Generalizations of (e, e or q)-fuzzy subalgebras in BCK/BCI-algebras , 2009, Comput. Math. Appl..

[20]  Xu Zhang,et al.  Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers , 2018, J. Intell. Fuzzy Syst..

[21]  Y. Jun,et al.  CUBIC IDEALS IN SEMIGROUPS , 2013 .

[22]  Jian-qiang Wang,et al.  Selecting Project Delivery Systems Based on Simplified Neutrosophic Linguistic Preference Relations , 2017, Symmetry.

[23]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[24]  Young Bae Jun,et al.  Cubic structures applied to ideals of BCI-algebras , 2011, Comput. Math. Appl..

[25]  Sultan Yamak,et al.  Generalized fuzzy bi-ideals of semigroups , 2008, Soft Comput..

[26]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .