Relationships between ganglion cell dendritic structure and retinal topography in the cat

The morphology of ganglion cell dendritic trees varies across the cat retina. Evidence is presented that the variation in two attributes of ganglion cell dendritic structure can be accounted for by specific aspects of the topography of the adult and developing retina.

[1]  B. Dreher,et al.  Functional morphology of beta cells in the area centralis of the cat's retina: a model for the evolution of central retinal specializations. , 1982, Brain, behavior and evolution.

[2]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[3]  R. Linden,et al.  Ganglion cell death within the developing retina: A regulatory role for retinal dendrites? , 1982, Neuroscience.

[4]  J. H. Elliott,et al.  Dendritic fields of the retinal ganglion cells in the cat. , 1970, Archives of ophthalmology.

[5]  R. Linden,et al.  Evidence for dendritic competition in the developing retina , 1982, Nature.

[6]  P. Sterling,et al.  Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion cells. , 1980, Science.

[7]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  J. Stone,et al.  The site of commencement of retinal maturation in the rabbit , 1985, Vision Research.

[9]  C. Shatz,et al.  Prenatal development of individual retinogeniculate axons during the period of segregation , 1984, Nature.

[10]  L. Peichl,et al.  Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period , 1985, The Journal of comparative neurology.

[11]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[12]  A. Leventhal Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  A. Leventhal,et al.  Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially , 1986, Brain Research.

[14]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[15]  E. Batschelet Circular statistics in biology , 1981 .

[16]  M. Mumenthaler,et al.  Obstetrical Lesions of the Brachial Plexus , 1982 .

[17]  M. Dubin,et al.  Kitten ganglion cells: dendritic field size at 3 weeks of age and correlation with receptive field size. , 1978, Investigative ophthalmology & visual science.

[18]  J. Adams,et al.  Technical considerations on the use of horseradish peroxidase as a neuronal marker , 1977, Neuroscience.

[19]  M. Dubin,et al.  Non‐uniform postnatal growth of the cat retina , 1984, The Journal of comparative neurology.

[20]  A. Hendrickson,et al.  The histogenesis of the fovea in the macaque monkey. , 1976, Investigative ophthalmology & visual science.

[21]  B. Dreher,et al.  The morphology, number, distribution and central projections of Class I retinal ganglion cells in albino and hooded rats. , 1985, Brain, behavior and evolution.

[22]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  R. Williams,et al.  Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  J D Schall,et al.  Ganglion cell dendritic structure and retinal topography in the rat , 1987, The Journal of comparative neurology.

[26]  J. Stone,et al.  The optic nerve of the cat: appearance and loss of axons during normal development. , 1982, Brain research.

[27]  J D Schall,et al.  Retinal constraints on orientation specificity in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Viktor Hamburger,et al.  Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord , 1974, The Journal of comparative neurology.

[29]  J. E. Vaughn,et al.  A QUANTITATIVE STUDY OF SYNAPSES ON MOTOR NEURON DENDRITIC GROWTH CONES IN DEVELOPING MOUSE SPINAL CORD , 1974, The Journal of cell biology.

[30]  W. Levick,et al.  Analysis of orientation bias in cat retina , 1982, The Journal of physiology.

[31]  R. Wong Ontogeny of the cat retinal ganglion cell layer , 1985 .

[32]  J. Stone,et al.  Uniformity of cell distribution in the ganglion cell layer of prenatal cat retina: implications for mechanisms of retinal development. , 1981, Brain research.

[33]  H. Wässle,et al.  The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. , 1983, The Journal of physiology.

[34]  J D Schall,et al.  Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret , 1985, The Journal of comparative neurology.

[35]  J. Stone,et al.  The topography of cytogenesis in the developing retina of the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[37]  J. Stone,et al.  The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system , 1984, Neuroscience.

[38]  J. Stone,et al.  Time course of morphological differentiation of cat retinal ganglion cells: Influences on soma size , 1983, The Journal of comparative neurology.

[39]  J. Stone,et al.  The site of commencement of maturation in mammalian retina: observations in the cat. , 1982, Brain research.

[40]  J. Stone,et al.  Ganglion, amacrine and horizontal cells of the cat's retina. , 1967, Vision research.

[41]  A Hughes,et al.  A quantitative analysis of the cat retinal ganglion cell topography , 1975, The Journal of comparative neurology.

[42]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[43]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[44]  P C Letourneau,et al.  Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. , 1975, Developmental biology.

[45]  H. Kolb The inner plexiform layer in the retina of the cat: electron microscopic observations , 1979, Journal of neurocytology.

[46]  G. Albrecht-Buehler,et al.  Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function? , 1976, The Journal of cell biology.

[47]  J. Stone,et al.  The number and distribution of ganglion cells in the cat's retina , 1978, The Journal of comparative neurology.

[48]  J. Provis,et al.  Development of the human retina: Patterns of cell distribution and redistribution in the ganglion cell layer , 1985, The Journal of comparative neurology.