Neural Spline Flows

A normalizing flow models a complex probability density as an invertible transformation of a simple base density. Flows based on either coupling or autoregressive transforms both offer exact density evaluation and sampling, but rely on the parameterization of an easily invertible elementwise transformation, whose choice determines the flexibility of these models. Building upon recent work, we propose a fully-differentiable module based on monotonic rational-quadratic splines, which enhances the flexibility of both coupling and autoregressive transforms while retaining analytic invertibility. We demonstrate that neural spline flows improve density estimation, variational inference, and generative modeling of images.

[1]  J. Gregory,et al.  Piecewise rational quadratic interpola-tion to monotonic data , 1982 .

[2]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[3]  M. Steffen A simple method for monotonic interpolation in one dimension. , 1990 .

[4]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[5]  Ramesh A. Gopinath,et al.  Gaussianization , 2000, NIPS.

[6]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Carl E. Rasmussen,et al.  Warped Gaussian Processes , 2003, NIPS.

[8]  F BlinnJames How to Solve a Cubic Equation, Part 2 , 2006 .

[9]  James F. Blinn,et al.  How to Solve a Cubic Equation, Part 5: Back to Numerics , 2007, IEEE Computer Graphics and Applications.

[10]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[11]  Hugo Larochelle,et al.  RNADE: The real-valued neural autoregressive density-estimator , 2013, NIPS.

[12]  Gal Elidan,et al.  Copulas in Machine Learning , 2013 .

[13]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[14]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[15]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[16]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[17]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[18]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[19]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[20]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[21]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[22]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[23]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[24]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[26]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[27]  Jakub M. Tomczak,et al.  UvA-DARE ( Digital Academic Repository ) Improving Variational Auto-Encoders using Householder Flow , 2016 .

[28]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[29]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[30]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[31]  Raquel Urtasun,et al.  The Reversible Residual Network: Backpropagation Without Storing Activations , 2017, NIPS.

[32]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[33]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[34]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[35]  Gregory Cohen,et al.  EMNIST: an extension of MNIST to handwritten letters , 2017, CVPR 2017.

[36]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[37]  Max Welling,et al.  Multiplicative Normalizing Flows for Variational Bayesian Neural Networks , 2017, ICML.

[38]  John P. Cunningham,et al.  Maximum Entropy Flow Networks , 2017, ICLR.

[39]  Dustin Tran,et al.  TensorFlow Distributions , 2017, ArXiv.

[40]  Nematollah Batmanghelich,et al.  Deep Diffeomorphic Normalizing Flows , 2018, ArXiv.

[41]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[42]  Barnabás Póczos,et al.  Transformation Autoregressive Networks , 2018, ICML.

[43]  Roger B. Grosse,et al.  Reversible Recurrent Neural Networks , 2018, NeurIPS.

[44]  Fabio Viola,et al.  Taming VAEs , 2018, ArXiv.

[45]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[46]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[47]  Max Welling,et al.  Sylvester Normalizing Flows for Variational Inference , 2018, UAI.

[48]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[49]  Ryan Prenger,et al.  Waveglow: A Flow-based Generative Network for Speech Synthesis , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[50]  Nicola De Cao,et al.  Block Neural Autoregressive Flow , 2019, UAI.

[51]  Alexander M. Rush,et al.  Latent Normalizing Flows for Discrete Sequences , 2019, ICML.

[52]  Sungwon Kim,et al.  FloWaveNet : A Generative Flow for Raw Audio , 2018, ICML.

[53]  David Duvenaud,et al.  FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.

[54]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..

[55]  Yaoliang Yu,et al.  Sum-of-Squares Polynomial Flow , 2019, ICML.

[56]  Max Welling,et al.  Emerging Convolutions for Generative Normalizing Flows , 2019, ICML.

[57]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[58]  VideoFlow: A Flow-Based Generative Model for Video , 2019, ArXiv.

[59]  Pieter Abbeel,et al.  Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design , 2019, ICML.

[60]  Iain Murray,et al.  Cubic-Spline Flows , 2019, ICML 2019.

[61]  Charlie Nash,et al.  Autoregressive Energy Machines , 2019, ICML.

[62]  S. Levine,et al.  VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation , 2019, ICLR.

[63]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.