Interpreting core-level spectra of oxidizing phosphorene: Theory and experiment

National Natural Science Foundation of China [51331006]; Key Research Program of Chinese Academy of Sciences [KGZD-EW-T06]; University of North Carolina Chapel Hill

[1]  Jun Hu,et al.  Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. , 2015, ACS nano.

[2]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[3]  A. Morita,et al.  Electronic structure of black phosphorus studied by polarized soft-x-ray emission and absorption spectroscopy , 1984 .

[4]  B. Johansson,et al.  Core-level binding-energy shifts for the metallic elements , 1980 .

[5]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[6]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[7]  S. Suga,et al.  Valence band and core-level photoemission spectra of black phosphorus single crystals , 1983 .

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[10]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[11]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[12]  A. Ziletti,et al.  Phosphorene oxides: Bandgap engineering of phosphorene by oxidation , 2014, 1410.3906.

[13]  P. Ye,et al.  Surface and interfacial study of half cycle atomic layer deposited Al2O3 on black phosphorus , 2015 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[16]  Zhen Zhu,et al.  Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. , 2014, Physical review letters.

[17]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[18]  Y. Maruyama,et al.  Electronic structure of black phosphorus studied by X-ray photoelectron spectroscopy , 1982 .

[19]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[20]  Xiaolong Liu,et al.  In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. , 2015, The journal of physical chemistry letters.

[21]  M. Hersam,et al.  Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. , 2015, ACS nano.

[22]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[23]  M. Grunze,et al.  THERMODYNAMIC INTERPRETATION OF CORE-LEVEL BINDING ENERGIES IN ADSORBATES , 1983 .

[24]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[25]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[26]  M. Grunze,et al.  Adsorption and decomposition of Ammonia on a W(110) surface: photoemission fingerprinting and interpretation of the core level binding energies using the equivalent core approximation , 1982 .

[27]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[28]  T. Moffat,et al.  An X-ray photoelectron spectroscopy study of chromium-metalloid alloys—III , 1995 .

[29]  Vijay Kumar,et al.  Semiempirical theory for surface core-level shifts , 1982 .