On the lattice Boltzmann method for phonon transport

The lattice Boltzmann method is a discrete representation of the Boltzmann transport equation that has been employed for modeling transport of particles of different nature. In the present work, we describe the lattice Boltzmann methodology and implementation techniques for the phonon transport modeling in crystalline materials. We show that some phonon physical properties, e.g., mean free path and group velocity, should be corrected to their effective values for one- and two-dimensional simulations, if one uses the isotropic approximation. We find that use of the D2Q9 lattice for phonon transport leads to erroneous results in transient ballistic simulations, and the D2Q7 lattice should be employed for two-dimensional simulations. Furthermore, we show that at the ballistic regime, the effect of direction discretization becomes apparent in two dimensions, regardless of the lattice used. Numerical methodology, lattice structure, and implementation of initial and different boundary conditions for the D2Q7 lattice are discussed in detail.

[1]  Suhas V. Patankar,et al.  RAY EFFECT AND FALSE SCATTERING IN THE DISCRETE ORDINATES METHOD , 1993 .

[2]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[3]  Bahgat Sammakia,et al.  Multi-Objective Optimization to Improve Both Thermal and Device Performance of a Nonuniformly Powered Micro-Architecture , 2010 .

[4]  C. L. Tien,et al.  Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity , 1998, Heat Transfer.

[5]  Cristina H. Amon,et al.  Submicron heat transport model in silicon accounting for phonon dispersion and polarization , 2004 .

[6]  Li-Hsin Hung,et al.  Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Qing Hao,et al.  Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores , 2009 .

[8]  Cristina H. Amon,et al.  Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors , 2005 .

[9]  Huaichun Zhou,et al.  Improved Discrete Ordinates Method for Ray Effects Mitigation , 2011 .

[10]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[11]  Cristina H. Amon,et al.  Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions , 2007 .

[12]  Pekka Heino,et al.  Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction , 2010, Comput. Math. Appl..

[13]  G Chen,et al.  Ballistic-diffusive heat-conduction equations. , 2001, Physical review letters.

[14]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[15]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[16]  W. A. Fiveland,et al.  Discrete Ordinate Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media , 1987 .

[17]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[18]  Cristina H. Amon,et al.  Thin film phonon heat conduction by the dispersion lattice boltzmann method , 2008 .

[19]  Cristina H. Amon,et al.  In-plane phonon transport in thin films , 2010 .

[20]  Cristina H. Amon,et al.  Cross-plane phonon transport in thin films , 2010 .

[21]  Jeng-Rong Ho,et al.  Lattice-Boltzmann modeling of phonon hydrodynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Pekka Heino Role of Dispersion and Optical Phonons in a Lattice-Boltzmann Finite-Difference Model for Nanoscale Thermal Conduction , 2008 .

[23]  Kenneth E. Goodson,et al.  Heat Conduction in Novel Electronic Films , 1999 .

[24]  Gang Chen,et al.  Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales , 2002 .

[25]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[27]  Pekka Heino Multiscale Lattice-Boltzmann Finite Difference Model for Thermal Conduction from Nanoscale Hot Spots , 2008 .

[28]  G. Le Carval,et al.  Phonon transport in electronic devices: From diffusive to ballistic regime , 2008, 2008 International Conference on Simulation of Semiconductor Processes and Devices.

[29]  Guyer Ra Phonon gas: A lattice Boltzmann description. , 1994 .

[30]  Cristina H. Amon,et al.  Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices , 2010 .

[31]  Alan J. H. McGaughey,et al.  Observation and description of phonon interactions in molecular dynamics simulations , 2005 .

[32]  Arun Majumdar,et al.  Transient ballistic and diffusive phonon heat transport in thin films , 1993 .

[33]  Alan J. H. McGaughey,et al.  Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation , 2004 .

[34]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[35]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[36]  Sauro Succi,et al.  The lattice Boltzmann equation: a new tool for computational fluid-dynamics , 1991 .

[37]  Pedro J. Coelho,et al.  The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods , 2002 .

[38]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[39]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[40]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[41]  Jeng-Rong Ho,et al.  Lattice Boltzmann study on size effect with geometrical bending on phonon heat conduction in a nanoduct , 2004 .

[42]  Cristina H. Amon,et al.  Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling , 2006 .

[43]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[44]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[45]  M. Kaviany,et al.  Erratum: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation [Phys. Rev. B 69, 094303 (2004)] , 2009 .

[46]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[47]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[48]  Gilles Flamant,et al.  MITIGATION OF RAY EFFECTS IN THE DISCRETE ORDINATES METHOD , 2003 .

[49]  Ladd,et al.  Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. , 1986, Physical review. B, Condensed matter.

[50]  Gang Chen,et al.  Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation , 2008 .

[51]  Samuel Graham,et al.  Multiscale Lattice Boltzmann Modeling of Phonon Transport in Crystalline Semiconductor Materials , 2010 .

[52]  J. Goicochea,et al.  Phonon relaxation rates in silicon thin films determined by molecular dynamics , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[53]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[54]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[55]  Cristina H. Amon,et al.  A novel heat transfer model and its application to information storage systems , 2005 .

[56]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[57]  Dominique Baillis,et al.  Prediction of thermal conductivity of nanostructures : Influence of phonon dispersion approximation , 2009 .

[58]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.