Classification of electrophysiological and morphological types in mouse visual cortex

Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly-accessible online database, the Allen Cell Types Database, to display these data sets. Intrinsic physiological and morphological properties were measured from over 1,800 neurons from the adult laboratory mouse visual cortex. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We establish a taxonomy of morphologically- and electrophysiologically-defined cell types for this region of cortex with 17 e-types and 35 m-types, as well as an initial correspondence with previously-defined transcriptomic cell types using the same transgenic mouse lines.

Brian R. Lee | Christof Koch | Hanchuan Peng | Lydia Ng | Stefan Mihalas | Anton Arkhipov | David Reid | Colin Farrell | Julie Harris | Hongkui Zeng | Michael Hawrylycz | David Feng | Miranda Robertson | Ed S. Lein | Peter Chong | Corinne Teeter | Xiaoxiao Liu | Zhi Zhou | Brian R. Long | Emma Garren | Thuc Nghi Nguyen | Bosiljka Tasic | Alex Henry | Staci A. Sorensen | Julie A. Harris | Amy Bernard | Shiella Caldejon | Wayne Wakeman | John W. Phillips | Daniel Park | Susan M. Sunkin | Aaron Szafer | Philip R. Nicovich | Nathan W. Gouwens | Jed Perkins | Cliff Slaughterbeck | Jim Berg | Tim Jarsky | Gilberto Soler-Llavina | Kristen Hadley | DiJon Hill | Lisa Kim | Rusty Mann | Lindsay Ng | Aaron Oldre | Jonathan T. Ting | Gabe J. Murphy | Costas A. Anastassiou | Matthew Kroll | R. D. Young | Keith B. Godfrey | Nathalie Gaudreault | Agata Budzillo | Kiet Ngo | Stefan Mihalas | A. Henry | T. Nguyen | C. Slaughterbeck | Wayne Wakeman | David Feng | Hanchuan Peng | M. Hawrylycz | Hongkui Zeng | Bosiljka Tasic | E. Garren | Tamara Casper | Matthew Kroll | Sheana E. Parry | A. Szafer | N. Dee | S. Sunkin | E. Lein | C. Anastassiou | Hong Gu | Tsega Desta | Tracy A. Lemon | Lydia Ng | Corinne Teeter | G. Murphy | T. Jarsky | J. Ting | Christof Koch | R. Dalley | Krissy Brouner | S. Caldejon | C. Cuhaciyan | Aaron Oldre | D. Sandman | K. Godfrey | R. Young | Kris Bickley | N. Dotson | Michael Fisher | Caroline Habel | Samuel R Josephsen | L. Potekhina | Nivretta M. Thatra | P. Nicovich | Kiet Ngo | M. McGraw | Jed Perkins | M. Robertson | C. Farrell | A. Arkhipov | Agata Budzillo | Thomas Braun | Peter Chong | Kirsten Crichton | Rebecca de Frates | Tom Egdorf | A. Gary | M. Gorham | Kristen Hadley | D. Hill | Sara Kebede | Lisa Kim | Rusty Mann | Lindsay Ng | Daniel Park | David Reid | J. Sulc | Herman Tung | M. Schroedter | James Harrington | Zhi Zhou | Xiaoxiao Liu | Changkyu Lee | Nicole Blesie | Samuel Dingman | Alyse Doperalski | M. Garwood | Nathalie Gaudreault | Gilberto J. Soler-Llavina | Nazif Taskin | A. Bernard | Tanya L. Daigle | James Harrington | Medea McGraw | Tsega Desta | Nick Dee | Sheana Parry | Tracy Lemon | Chang-Kyu Lee | Tamara Casper | Kirsten Crichton | Josef Sulc | Herman Tung | Eliza Barkan | Kris Bickley | Nicole Blesie | Thomas Braun | Krissy Brouner | Dan Casteli | Christine Cuhaciyan | Rachel A. Dalley | Samuel Dingman | Alyse Doperalski | Nadezhda Dotson | Tom Egdorf | Michael Fisher | Rebecca de Frates | Marissa Garwood | Amanda Gary | Keith Godfrey | Melissa Gorham | Hong Gu | Caroline Habel | Sam Josephsen | Sara Kebede | Alice Mukora | Lydia Potekhina | David Sandman | Martin Schroedter | Naz Taskin | Nivretta Thatra | Grace Williams | Shiella D. Caldejon | Eliza R. Barkan | S. Sorensen | J. Berg | N. Gouwens | G. Williams | A. Mukora | Dan Casteli | L. D. Tanya | Amy Bernard | Dijon Hill | Colin Farrell

[1]  Jochen F. Staiger,et al.  Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences , 2015, Cerebral cortex.

[2]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[3]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[4]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[5]  Charles Rattray,et al.  Themes and variations , 2007, Architectural Research Quarterly.

[6]  Zhi Zhou,et al.  TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections , 2015, Neuroinformatics.

[7]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[8]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[9]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[10]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[11]  R. Yuste,et al.  Classification of neocortical interneurons using affinity propagation , 2013, Front. Neural Circuits.

[12]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[13]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[14]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[15]  Edward M Callaway,et al.  Development of layer‐specific axonal arborizations in mouse primary somatosensory cortex , 2006, The Journal of comparative neurology.

[16]  Staci A. Sorensen,et al.  Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation , 2014, Front. Neural Circuits.

[17]  Oscar Marín,et al.  Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch , 2015, Science.

[18]  Qing Nie,et al.  Primary visual cortex shows laminar‐specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity , 2016, The Journal of physiology.

[19]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[20]  Rafael Yuste,et al.  Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex , 2003, The Journal of comparative neurology.

[21]  Juan Carlos Fernández,et al.  Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms , 2014, Ann. Oper. Res..

[22]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[23]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[24]  Hannah Monyer,et al.  Functional Characterization of Intrinsic Cholinergic Interneurons in the Cortex , 2007, The Journal of Neuroscience.

[25]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[26]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[27]  Henry Markram,et al.  A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. , 2013, Cerebral cortex.

[28]  Hanchuan Peng,et al.  Extensible visualization and analysis for multidimensional images using Vaa3D , 2014, Nature Protocols.

[29]  Christof Koch,et al.  Generalized leaky integrate-and-fire models classify multiple neuron types , 2017, Nature Communications.

[30]  Ahmed Mahfouz,et al.  Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. , 2015, Methods.

[31]  Gilles Celeux,et al.  Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[32]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[33]  William Muñoz,et al.  Spatiotemporal specificity in cholinergic control of neocortical function , 2014, Current Opinion in Neurobiology.

[34]  Christof Koch,et al.  Systematic generation of biophysically detailed models for diverse cortical neuron types , 2018, Nature Communications.

[35]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[36]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[37]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[38]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells , 1985, The Journal of comparative neurology.

[39]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[40]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[41]  Hanchuan Peng,et al.  TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images , 2016, Nature Methods.

[42]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[43]  D. Lewis,et al.  Distinct Physiological Maturation of Parvalbumin-Positive Neuron Subtypes in Mouse Prefrontal Cortex , 2017, The Journal of Neuroscience.

[44]  Manuel Marx,et al.  Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex , 2012, Cerebral cortex.

[45]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[46]  Brenna Li,et al.  Modeling sources of interlaboratory variability in electrophysiological properties of mammalian neurons. , 2018, Journal of neurophysiology.

[47]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[48]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[49]  David B. Stockton,et al.  Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow , 2017, Neuroinformatics.

[50]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[51]  Yong-Chun Yu,et al.  Development of layer 1 neurons in the mouse neocortex. , 2014, Cerebral cortex.

[52]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[53]  Paul Pavlidis,et al.  Transcriptomic correlates of neuron electrophysiological diversity , 2017, bioRxiv.

[54]  Paola Arlotta,et al.  Generating neuronal diversity in the mammalian cerebral cortex. , 2015, Annual review of cell and developmental biology.

[55]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[56]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017 .

[57]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[58]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[59]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[60]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[61]  R. Yuste,et al.  The Enigmatic Function of Chandelier Cells , 2010, Front. Neurosci..

[62]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[63]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[64]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[65]  E. Neher Correction for liquid junction potentials in patch clamp experiments. , 1992, Methods in enzymology.

[66]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[67]  Zhi Zhou,et al.  Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures , 2014, Neuroinformatics.

[68]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[69]  Sean M. Kelly,et al.  Erratum: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex (Neuron (2016) 19(6) (1228–1243)(S089662731630513X)(10.1016/j.neuron.2016.08.021)) , 2016 .

[70]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.