Logarithms of iteration matrices, and proof of a conjecture by Shadrin and Zvonkine

A proof of a conjecture by Shadrin and Zvonkine, relating the entries of a matrix arising in the study of Hurwitz numbers to a certain sequence of rational numbers, is given. The main tools used are iteration matrices of formal power series and their (matrix) logarithms.

[1]  L. Rubel,et al.  COHERENT FAMILIES OF POLYNOMIALS , 1986 .

[2]  Lou van den Dries,et al.  Asymptotic differential algebra , 2005 .

[3]  K. Mahler Lectures on Transcendental Numbers , 1976 .

[4]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[5]  I. N. Baker Permutable power series and regular iteration , 1962, Journal of the Australian Mathematical Society.

[6]  M. Kuczma,et al.  Iterative Functional Equations , 1990 .

[7]  I. N. Baker Fractional iteration near a fixpoint of multiplier 1. , 1964, Journal of the Australian Mathematical Society.

[8]  D. Zvonkine,et al.  Changes of variables in ELSV-type formulas , 2006, math/0602457.

[9]  Donald E. Knuth Convolution polynomials , 1992 .

[10]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[11]  I. N. Baker Zusammensetzungen ganzer Funktionen , 1958 .

[12]  Lee A. Rubel,et al.  A Gap Theorem for Power Series Solutions of Algebraic Differential Equations , 1986 .

[13]  L. Dries,et al.  Liouville closed H-fields , 2005 .

[14]  Matthias Aschenbrenner,et al.  Julia's equation and differential transcendence , 2013, 1307.6381.

[15]  S. Scheinberg Power series in one variable , 1970 .

[16]  W. Bergweiler Solution of a problem of Rubel concerning iteration and algebraic differential equations , 1995 .

[17]  M. Kuczma Functional equations in a single variable , 1968 .

[18]  A. Vainshtein,et al.  Hurwitz numbers and intersections on moduli spaces of curves , 2000, math/0004096.

[19]  P. Erdös,et al.  On analytic iteration , 1960 .

[20]  A Power Matrix Approach to the Witt Algebra and Loewner Equations , 2009, 0907.1601.