Multichannel blind deconvolution of seismic signals

A new algorithm for simultaneous wavelet estimation and deconvolution of seismic reflection signals is given. To remove the inherent ambiguity in this blind deconvolution problem, we introduce relevant a priori information. Our major assumption is sparseness of the reflectivity, which corresponds to a layered-earth model. This allows nonminimum-phase wavelets to be recovered reliably and closely spaced reflectors to be resolved. To combine a priori knowledge and data, we use a Bayesian framework and derive a maximum a posteriori estimate. Computing this estimate is a difficult optimization problem solved by a suboptimal iterative procedure. The procedure alternates steps of wavelet estimation and reflectivity estimation. The first step only requires a simple least-squares fit, while the second step is solved by the iterated window maximization algorithm proposed by Kaaresen. This enables better efficiency and optimality than established alternatives. The resulting optimization method can easily handle multichannel models with only a moderate increase of the computational load. Lateral continuity of the reflectors is achieved by modeling local dependencies between neighboring traces. Major improvements in both wavelet and reflectivity estimates are obtained by taking the wavelet to be invariant across several traces. The practicality of the algorithm is demonstrated on synthetic and real seismic data. An application to multivariate well-log segmentation is also given.

[1]  Sven Treitel,et al.  Geophysical Signal Analysis , 2000 .

[2]  Kjetil F. Kaaresen Evaluation and applications of the iterated window maximization method for sparse deconvolution , 1998, IEEE Trans. Signal Process..

[3]  Kjetil F. Kaaresen,et al.  Deconvolution of sparse spike trains by iterated window maximization , 1997, IEEE Trans. Signal Process..

[4]  Torfinn Taxt,et al.  Comparison of cepstrum based methods for radial blind deconvolution of ultrasound images , 1996, Proceedings Ninth IEEE Symposium on Computer-Based Medical Systems.

[5]  Rong Chen,et al.  Simultaneous wavelet estimation and deconvolution of reflection seismic signals , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Kjetil F. Kaaresen,et al.  Maximum A Posteriori Deconvolution of Sparse Spike Trains , 1996 .

[7]  Kjetil F. Kaaresen,et al.  Efficient Maximum A Posteriori Deconvolution of Sparse Structures , 1996 .

[8]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[9]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[10]  G. Lazear Mixed-phase wavelet estimation using fourth-order cumulants , 1993 .

[11]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[12]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[13]  Per Christian Hansen,et al.  The Modified Truncated SVD Method for Regularization in General Form , 1992, SIAM J. Sci. Comput..

[14]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[15]  Yves Goussard,et al.  On simultaneous signal estimation and parameter identification using a generalized likelihood approach , 1992, IEEE Trans. Inf. Theory.

[16]  M. Lavielle 2-D Bayesian deconvolution , 1991 .

[17]  C. H. Mehta,et al.  Segmentation of well logs by maximum likelihood estimation , 1991 .

[18]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[19]  A. Moghaddamjoo,et al.  Constraint optimum well-log signal segmentation , 1989 .

[20]  Gordon Hayward,et al.  Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data , 1989 .

[21]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[22]  K. Paulson,et al.  A Markov-Gauss algorithm for blocking well logs , 1988 .

[23]  Jerry M. Mendel,et al.  Optimal simultaneous detection and estimation of filtered discrete semi-Markov chains , 1988, IEEE Trans. Inf. Theory.

[24]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[25]  E. S. Robinson,et al.  Basic exploration geophysics , 1988 .

[26]  A. T. Walden,et al.  The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution , 1986 .

[27]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[28]  Jerry M. Mendel,et al.  Maximum-likelihood deconvolution; an optimization theory perspective , 1986 .

[29]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Chong-Yung Chi,et al.  A computationally fast approach to maximum-likelihood deconvolution , 1984 .

[31]  J. Mendel,et al.  Maximum-Likelihood Seismic Deconvolution , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[33]  D. Bilgeri,et al.  NON‐LINEAR ESTIMATION OF REFLECTION COEFFICIENTS FROM SEISMIC DATA* , 1981 .

[34]  Fabio Rocca,et al.  Modeling seismic impedance with Markov chains , 1980 .

[35]  José Tribolet Seismic applications of homomorphic signal processing , 1979 .

[36]  S. Treitel PREDICTIVE DECONVOLUTION: THEORY AND PRACTICE , 1969 .

[37]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .