Examination of female energy dynamics and larval quality in the southern king crab, Lithodes santolla: Annual and interannual variability

[1]  R. Roa-Ureta,et al.  The impact of size truncation on reproductive success in the southern king crab (Lithodes santolla) , 2022, Fisheries Research.

[2]  L. Pardo,et al.  Assessing diversity of King Crab Lithodes spp. in the south‐eastern pacific using phylogeny and molecular species delimitation methods , 2022, Ecology and evolution.

[3]  M. Varisco,et al.  Differences in the timing of egg extrusion and reproductive investment between primiparous and multiparous females of the southern king crab Lithodes santolla , 2021, Marine Biology Research.

[4]  M. Varisco,et al.  Female reproductive output and potential recruitment of three fished southern king crab stocks from the Southern Atlantic Ocean , 2021, ICES Journal of Marine Science.

[5]  G. Macchi,et al.  Reproductive potential of southern king crab (Lithodes santolla) in South Patagonian Sector (south 48°S), a new fishery area , 2020 .

[6]  P. Di Salvatore,et al.  Southern king crab larval survival: from intra- and interfemale variations to a fishery-induced mortality , 2020 .

[7]  L. Giménez Phenotypic Plasticity and Phenotypic Links in Larval Development , 2020 .

[8]  Patricio A. Díaz,et al.  Upswing and expansion of the southern king crab (Lithodes santolla) fishery in Northwest Patagonia: Drivers, trends and opportunities for management , 2020 .

[9]  F. Bourrin,et al.  Particle Dynamics in Ushuaia Bay (Tierra del Fuego)-Potential Effect on Dissolved Oxygen Depletion , 2020, Water.

[10]  P. Di Salvatore,et al.  Differential reproductive investment in females of Lithodes santolla (Decapoda: Anomura) from different regions of southern South America , 2019, Scientia Marina.

[11]  Kathryn E. L. Smith,et al.  Intraspecific variability in larval development in the lithodine crab Lithodes maja , 2019 .

[12]  G. F. Arcos‐Ortega,et al.  Oogenesis of Lithodes santolla: histological and histochemical characterization , 2019, Latin American Journal of Aquatic Research.

[13]  G. Macchi,et al.  Egg production and validation of clutch fullness indices scale of southern king crab, Lithodes santolla, in the Central Patagonian Sector, Argentina (44°–48°S) , 2019, Fisheries Research.

[14]  O. Florentín,et al.  Suspended mesh-bags enclosures for Southern King Crab Lithodes santolla (Molina 1782) larvae and juvenile culture in the sea , 2018, Aquaculture.

[15]  L. Vay,et al.  Maternal Trophic Status and Offpsring Phenotype in a Marine Invertebrate , 2018, Scientific Reports.

[16]  G. Miao,et al.  Transcriptome-seq provides insights into sex-preference pattern of gene expression between testis and ovary of the crucifix crab ( Charybdis feriatus). , 2018, Physiological genomics.

[17]  M. D. M. Orgaz,et al.  Effect of Maternal Size, Reproductive Season and Interannual Variability in Offspring Provisioning of Carcinus maenas in a Coastal Lagoon , 2017, Estuaries and Coasts.

[18]  E. Li,et al.  A Review of Carbohydrate Nutrition and Metabolism in Crustaceans , 2016 .

[19]  W. C. Long,et al.  Primiparous Red King Crab Paralithodes camtschaticus are Less Fecund than Multiparous Crab , 2015 .

[20]  V. Confalonieri,et al.  Incongruence between molecular and morphological characters in the southern king crabs Lithodes santolla and Lithodes confundens (Decapoda: Anomura) , 2015, Polar Biology.

[21]  H. Pörtner,et al.  Differential physiological responses to oxygen availability in early life stages of decapods developing in distinct environments , 2015, Marine Biology.

[22]  M. Ikhwanuddin,et al.  A review of maturation diets for mud crab genus Scylla broodstock: Present research, problems and future perspective , 2015, Saudi journal of biological sciences.

[23]  L. L. López Greco,et al.  Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea) , 2015, PloS one.

[24]  Yuan Liu,et al.  Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. , 2015, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[25]  G. Rotllant,et al.  Interannual variability in the biochemical composition of newly hatched larvae of the spider crab Maja brachydactyla (Decapoda, Majidae) , 2014 .

[26]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[27]  Juan Freire,et al.  Changes between consecutive broods in the fecundity of the spider crab, Maja brachydactyla , 2011 .

[28]  C. Buck,et al.  Effects of Reproductive Stage and Temperature on Rates of Oxygen Consumption in Paralithodes platypus (Decapoda: Anomura) , 2010 .

[29]  L. Giménez Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. , 2010, Ecology.

[30]  Taku Sato,et al.  Influence of size- and sex-biased harvesting on reproduction of the coconut crab Birgus latro , 2010 .

[31]  N. Stenseth,et al.  Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus , 2010 .

[32]  G. Oliveira,et al.  Seasonal variations in the intermediate metabolism of Parastacus varicosus (Crustacea, Decapoda, Parastacidae). , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[33]  K. Anger,et al.  Seasonal and interpopulational variability in fecundity, egg size, and elemental composition (CHN) of eggs and larvae in a grapsoid crab, Chasmagnathus granulatus , 2007, Helgoland Marine Research.

[34]  Humberto Villarreal,et al.  Gonadal development and biochemical composition of female crayfish Cherax quadricarinatus (Decapoda: Parastacidae) in relation to the Gonadosomatic Index at first maturation , 2006 .

[35]  K. Anger,et al.  Larval and early juvenile development of Lithodes santolla (Molina, 1782) (Decapoda: Anomura: Lithodidae) reared at different temperatures in the laboratory , 2004 .

[36]  A. Ibarra,et al.  Shrimp larval quality in relation to broodstock condition , 2003 .

[37]  K. Anger,et al.  Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithodid crab from high latitudes , 2003 .

[38]  K. Anger,et al.  Changes in biomass and chemical composition during lecithotrophic larval development of the southern king crab, Lithodes santolla (Molina) , 2003 .

[39]  K. Anger,et al.  Larval performance in an estuarine crab, Chasmagnathus granulata, is a consequence of both larval and embryonic experience , 2003 .

[40]  Fernando Casanoves,et al.  A multiple-comparisons method based on the distribution of the root node distance of a binary tree , 2002 .

[41]  S. Petersen,et al.  Chemical and physiological changes during the embryonic development of the spider crab, Hyas araneus L. (Decapoda: Majidae) , 1997 .

[42]  K. Anger Physiological and biochemical changes during lecithotrophic larval development and early juvenile growth in the northern stone crab, Lithodes maja (Decapoda: Anomura) , 1996 .

[43]  A. D. Bryant,et al.  Reproductive investment in two spider crabs with different breeding strategies , 1995 .

[44]  P. Haefner,et al.  Interactions of Ovary and Hepatopancreas During the Reproductive Cycle of Crangon Crangon (L.) . II. Biochemical Relationships , 1994 .

[45]  B. Sainte‐Marie Reproductive Cycle and Fecundity of Primiparous and Multiparous Female Snow Crab, Chionoecetes opilio, in the Northwest Gulf of Saint Lawrence , 1993 .

[46]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[47]  A. Taylor,et al.  Determination of glycogen in small tissue samples. , 1970, Journal of applied physiology.

[48]  M. A. Mcwhinnie Gastrolith growth and calcium shifts in the freshwater crayfish, Orconectes virilis. , 1962, Comparative biochemistry and physiology.

[49]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[50]  C. Steinberg Transgenerational Effects – ‘Your Offspring Will Become What You Eat’ , 2018 .

[51]  K. M. Swiney,et al.  Does maternal size affect red king crab, Paralithodes camtschaticus, embryo and larval quality? , 2013 .

[52]  L. L. Greco,et al.  Influence of Female Size on Offspring Quality of the Freshwater Crayfish Cherax Quadricarinatus (Parastacidae: Decapoda) , 2012 .

[53]  T. Subramoniam Mechanisms and control of vitellogenesis in crustaceans , 2010, Fisheries Science.

[54]  J. Sévigny,et al.  The Snow Crab Mating System: Opportunity for Natural and Unnatural Selection in a Changing Environment , 2008 .

[55]  P. Ouellet,et al.  AN INVESTIGATION OF THE SOURCES OF VARIABILITY IN AMERICAN LOBSTER (HOMARUS AMERICANUS) EGGS AND LARVAE: FEMALE SIZE AND REPRODUCTIVE STATUS, AND INTERANNUAL AND INTERPOPULATION COMPARISONS , 2004 .

[56]  Marcelo U. García-Guerrero,et al.  VARIATION IN LIPID, PROTEIN, AND CARBOHYDRATE CONTENT DURING THE EMBRYONIC DEVELOPMENT OF THE CRAYFISH CHERAX QUADRICARINATUS (DECAPODA: PARASTACIDAE) , 2003 .

[57]  J. H. Vinuesa Biologia y pesqueria de la centolla (lithodes santolla) , 1991 .

[58]  J. H. Vinuesa Sistema reproductor, ciclo y madurez gonadal de la centolla (Lithodes antarcticus) del canal Beagle , 1984 .

[59]  A. Clarke Lipid Synthesis and Reproduction in the Polar Shrimp Chorismus antarcticus , 1982 .

[60]  C. Frings,et al.  A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. , 1970, American journal of clinical pathology.