Semiclassical vibrational spectroscopy with Hessian databases.

We report on a new approach to ease the computational overhead of ab initio "on-the-fly" semiclassical dynamics simulations for vibrational spectroscopy. The well known bottleneck of such computations lies in the necessity to estimate the Hessian matrix for propagating the semiclassical pre-exponential factor at each step along the dynamics. The procedure proposed here is based on the creation of a dynamical database of Hessians and associated molecular geometries able to speed up calculations while preserving the accuracy of results at a satisfactory level. This new approach can be interfaced to both analytical potential energy surfaces and on-the-fly dynamics, allowing one to study even large systems previously not achievable. We present results obtained for semiclassical vibrational power spectra of methane, glycine, and N-acetyl-L-phenylalaninyl-L-methionine-amide, a molecule of biological interest made of 46 atoms.

[1]  E. Pollak,et al.  Semiclassical on-the-fly computation of the S(0)-->S(1) absorption spectrum of formaldehyde. , 2009, Journal of Chemical Physics.

[2]  M. Ceotto,et al.  Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra. , 2018, The Journal of chemical physics.

[3]  M. Ceotto,et al.  Anharmonic vibrational eigenfunctions and infrared spectra from semiclassical molecular dynamics. , 2018, The Journal of chemical physics.

[4]  M. Ceotto,et al.  On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum , 2017, Journal of chemical theory and computation.

[5]  Vincenzo Barone,et al.  Anharmonic vibrational properties by a fully automated second-order perturbative approach. , 2005, The Journal of chemical physics.

[6]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[7]  S. D. Ivanov,et al.  Herman-Kluk propagator is free from zero-point energy leakage , 2018, Chemical Physics.

[8]  Joel M Bowman,et al.  Effects of Zero-Point Delocalization on the Vibrational Frequencies of Mixed HCl and Water Clusters. , 2014, The journal of physical chemistry letters.

[9]  S. Carter,et al.  MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules , 2003 .

[10]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[11]  M. Ceotto,et al.  Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics. , 2009, The Journal of chemical physics.

[12]  William H. Miller,et al.  Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants , 1974 .

[13]  M. Ceotto,et al.  First principles semiclassical calculations of vibrational eigenfunctions. , 2011, The Journal of chemical physics.

[14]  T. Carrington,et al.  Computing vibrational energy levels of CH4 with a Smolyak collocation method. , 2017, The Journal of chemical physics.

[15]  Himansu S. Biswal,et al.  Strength of NH···S Hydrogen Bonds in Methionine Residues Revealed by Gas-Phase IR/UV Spectroscopy. , 2012, The journal of physical chemistry letters.

[16]  Yu Zhuang,et al.  Data Reduction Through Increased Data Utilization in Chemical Dynamics Simulations , 2017, Big Data Res..

[17]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[18]  C. Castiglioni,et al.  Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. , 2017, Journal of chemical theory and computation.

[19]  D. Coker,et al.  Linearized path integral approach for calculating nonadiabatic time correlation functions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Ceotto,et al.  Multiple coherent states semiclassical initial value representation spectra calculations of lateral interactions for CO on Cu(100). , 2010, The Journal of chemical physics.

[21]  Michele Ceotto,et al.  Fighting the curse of dimensionality in first-principles semiclassical calculations: non-local reference states for large number of dimensions. , 2011, The Journal of chemical physics.

[22]  J. Vaníček,et al.  On-the-fly ab initio semiclassical evaluation of time-resolved electronic spectra. , 2018, The Journal of chemical physics.

[23]  G. D. Di Liberto,et al.  A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Cl-⋯CH3Cl pre-reaction complex with the VENUS suite of codes. , 2018, The Journal of chemical physics.

[24]  T. Carrington,et al.  Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. , 2016, The Journal of chemical physics.

[25]  E. Pollak,et al.  Thawed semiclassical IVR propagators , 2004 .

[26]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[27]  K. Kay,et al.  Improving the efficiency of the Herman–Kluk propagator by time integration , 1999 .

[28]  P. Taylor,et al.  An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers , 1995 .

[29]  J. Vaníček,et al.  On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia. , 2015, The journal of physical chemistry. A.

[30]  W. Miller,et al.  Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels , 2003 .

[31]  Michele Ceotto,et al.  First-principles semiclassical initial value representation molecular dynamics. , 2007, Physical chemistry chemical physics : PCCP.

[32]  Dario Tamascelli,et al.  Graphics processing units accelerated semiclassical initial value representation molecular dynamics. , 2013, The Journal of chemical physics.

[33]  William H Miller,et al.  Quantum dynamics of complex molecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. D. Di Liberto,et al.  "Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. , 2018, The Journal of chemical physics.

[35]  J. Heyda,et al.  Semiclassical hybrid approach to condensed phase molecular dynamics: application to the I2Kr17 cluster. , 2012, The journal of physical chemistry. A.

[36]  Aurélien Patoz,et al.  On-the-Fly Ab Initio Semiclassical Evaluation of Absorption Spectra of Polyatomic Molecules beyond the Condon Approximation. , 2018, The journal of physical chemistry letters.

[37]  K. Kay Semiclassical propagation for multidimensional systems by an initial value method , 1994 .

[38]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[39]  J. Vaníček,et al.  On-the-fly ab initio semiclassical dynamics: identifying degrees of freedom essential for emission spectra of oligothiophenes. , 2014, The Journal of chemical physics.

[40]  William H Miller,et al.  Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems. , 2007, The Journal of chemical physics.

[41]  Y. Zhuang,et al.  Higher-accuracy schemes for approximating the Hessian from electronic structure calculations in chemical dynamics simulations. , 2010, The Journal of chemical physics.

[42]  Michele Ceotto,et al.  Evaluating the Accuracy of Hessian Approximations for Direct Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[43]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[44]  Guohua Tao Efficient importance sampling in semiclassical initial value representation calculations for time correlation functions , 2014, Theoretical Chemistry Accounts.

[45]  E. Pollak,et al.  Comparison between different Gaussian series representations of the imaginary time propagator. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  G. D. Di Liberto,et al.  Semiclassical "Divide-and-Conquer" Method for Spectroscopic Calculations of High Dimensional Molecular Systems. , 2017, Physical review letters.

[47]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[48]  J. Bowman,et al.  Exact vibrational energies of non-rotating H2O and D2O using an accurate ab initio potential , 1988 .

[49]  W. Miller,et al.  Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. , 2011, The Journal of chemical physics.

[50]  Haobin Wang,et al.  A Log-Derivative Formulation of the Prefactor for the Semiclassical Herman-Kluk Propagator† , 2000 .

[51]  Oriol Vendrell,et al.  Full Dimensional (15D) Quantum-Dynamical Simulation of the Protonated Water-Dimer II: Infrared Spectrum and Vibrational Dynamics. , 2013 .

[52]  W. Miller,et al.  Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels. II. Application to H2CO, NH3, CH4, CH2D2 , 2003 .

[53]  Alán Aspuru-Guzik,et al.  Reproducing Deep Tunneling Splittings, Resonances, and Quantum Frequencies in Vibrational Spectra From a Handful of Direct Ab Initio Semiclassical Trajectories. , 2013, The journal of physical chemistry letters.

[54]  J. Bowman,et al.  Comparison of quantum, classical, and ring-polymer molecular dynamics infra-red spectra of Cl-(H2O) and H+(H2O)(2) , 2008 .

[55]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[56]  M. Gaigeot Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. , 2010, Physical chemistry chemical physics : PCCP.

[57]  T. Carrington,et al.  Variational quantum approaches for computing vibrational energies of polyatomic molecules , 2008 .

[58]  I. Burghardt,et al.  Quantum dynamics and spectroscopy of dihalogens in solid matrices. I. Efficient simulation of the photodynamics of the embedded I2Kr18 cluster using the G-MCTDH method. , 2018, The Journal of chemical physics.

[59]  W. Miller,et al.  Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation. , 2012, The Journal of chemical physics.

[60]  I. Burghardt,et al.  Quantum dynamics and spectroscopy of dihalogens in solid matrices. II. Theoretical aspects and G-MCTDH simulations of time-resolved coherent Raman spectra of Schrödinger cat states of the embedded I2Kr18 cluster. , 2018, The Journal of chemical physics.

[61]  George L. Barnes,et al.  Direct Chemical Dynamics Simulations. , 2017, Journal of the American Chemical Society.

[62]  Michele Ceotto,et al.  Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme. , 2013, The Journal of chemical physics.

[63]  D. Shalashilin,et al.  Multidimensional quantum propagation with the help of coupled coherent states , 2001 .

[64]  Michele Ceotto,et al.  An effective semiclassical approach to IR spectroscopy. , 2019, The Journal of chemical physics.

[65]  M. Ceotto,et al.  Application of the mixed time-averaging semiclassical initial value representation method to complex molecular spectra. , 2017, The Journal of chemical physics.

[66]  G. D. Di Liberto,et al.  The importance of the pre-exponential factor in semiclassical molecular dynamics. , 2016, The Journal of chemical physics.

[67]  N. Ananth,et al.  Validating and implementing modified Filinov phase filtration in semiclassical dynamics. , 2017, The Journal of chemical physics.

[68]  F. McLafferty,et al.  Infrared photodissociation spectroscopy of electrosprayed ions in a Fourier transform mass spectrometer. , 2005, Journal of the American Chemical Society.

[69]  G. D. Di Liberto,et al.  "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters. , 2018, The Journal of chemical physics.

[70]  Joel M. Bowman,et al.  Variational calculations of rovibrational energies of CH4 and isotopomers in full dimensionality using an ab initio potential , 1999 .

[71]  G. Worth,et al.  Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree method , 2003 .

[72]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[73]  K. Kay,et al.  Semiclassical initial value treatments of atoms and molecules. , 2005, Annual review of physical chemistry.

[74]  M. Baranger,et al.  Semiclassical approximations in phase space with coherent states , 2001, quant-ph/0105153.

[75]  D. Manolopoulos,et al.  APPLICATION OF THE FROZEN GAUSSIAN APPROXIMATION TO THE PHOTODISSOCIATION OF CO2 , 1995 .

[76]  E. Williams,et al.  Molecular hydrogen messengers can lead to structural infidelity: A cautionary tale of protonated glycine. , 2015, The Journal of chemical physics.

[77]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[78]  F. Grossmann A semiclassical hybrid approach to many particle quantum dynamics. , 2006, The Journal of chemical physics.

[79]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[80]  M. Ceotto,et al.  Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations. , 2015, The Journal of chemical physics.

[81]  Guohua Tao Electronically nonadiabatic dynamics in complex molecular systems: an efficient and accurate semiclassical solution. , 2013, The journal of physical chemistry. A.

[82]  Oriol Vendrell,et al.  Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. , 2007, The Journal of chemical physics.

[83]  J. Vaníček,et al.  Single-Hessian thawed Gaussian approximation. , 2019, The Journal of chemical physics.

[84]  G. D. Di Liberto,et al.  Protonated glycine supramolecular systems: the need for quantum dynamics† †Electronic supplementary information (ESI) available: Computational setup; geometries, harmonic frequencies and semiclassical vibrational levels of the systems investigated; description of the theory. See DOI: 10.1039/c8sc030 , 2018, Chemical science.