Nonmonotone retrospective conic trust region method for unconstrained optimization

We propose a retrospective conic trust region method for unconstrained optimization. It can be regarded as an extension of the retrospective trust region method based on a quadratic model which was first proposed by Bastin et al (2010). Nonmonotone technique is added to accelerate the speed of the algorithm. Under some mild conditions, the sequence generated by our algorithm converges to a stationary point. Numerical tests on a set of standard testing problems confirm the efficiency of our new method.

[1]  Â Jean-Paul Bulteau,et al.  Curvilinear path and trust region in unconstrained optimization: a convergence analysis , 1987 .

[2]  Wenyu Sun,et al.  Nonmonotone trust region method for solving optimization problems , 2004, Appl. Math. Comput..

[3]  S. Sheng,et al.  Interpolation by conic model for unconstrained optimization , 1995, Computing.

[4]  Nicholas I. M. Gould,et al.  A Filter-Trust-Region Method for Unconstrained Optimization , 2005, SIAM J. Optim..

[5]  Wenyu Sun,et al.  A trust region method for conic model to solve unconstraind optimizaions , 1996 .

[6]  N. Deng,et al.  Nonmonotonic trust region algorithm , 1993 .

[7]  Jorge J. Moré,et al.  Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.

[8]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[9]  L. Grippo,et al.  A truncated Newton method with nonmonotone line search for unconstrained optimization , 1989 .

[10]  Eduardo Álvarez-Miranda,et al.  Risk models for the Prize Collecting Steiner Tree problems with interval data , 2014 .

[11]  Zhongwen Chen,et al.  A Retrospective Filter Trust Region Algorithm for Unconstrained Optimization , 2010 .

[12]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[13]  W. Davidon Conic Approximations and Collinear Scalings for Optimizers , 1980 .

[14]  Philippe L. Toint,et al.  A retrospective trust-region method for unconstrained optimization , 2010, Math. Program..

[15]  Qin Ni,et al.  Optimality Conditions for Trust-Region Subproblems Involving a Conic Model , 2005, SIAM J. Optim..

[16]  Yuhong Dai On the Nonmonotone Line Search , 2002 .

[17]  Chunlin Hao,et al.  Global convergence of an SQP algorithm for nonlinearoptimization with overdetermined constraints , 2012 .

[18]  M. J. D. Powell,et al.  On the global convergence of trust region algorithms for unconstrained minimization , 1984, Math. Program..

[19]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[20]  J. F. Bonnans,et al.  Avoiding the Maratos effect by means of a nonmonotone line search II. Inequality constrained problems—feasible iterates , 1992 .

[21]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[22]  Ya-Xiang Yuan,et al.  Recent advances in numerical methods for nonlinear equations andnonlinear least squares , 2011 .

[23]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[24]  Jin Yun Yuan,et al.  Quasi-Newton trust region algorithm for non-smooth least squares problems , 1999, Appl. Math. Comput..

[25]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[26]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[27]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[28]  Michael C. Ferris,et al.  Nonmonotone curvilinear line search methods for unconstrained optimization , 1996, Comput. Optim. Appl..

[29]  Shao-Jian Qu,et al.  A trust‐region method with a conic model for unconstrained optimization , 2008 .

[30]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[31]  Yijun Li,et al.  A new nonmonotone trust-region method of conic model for solving unconstrained optimization , 2010, J. Comput. Appl. Math..

[32]  D. Sorensen THE Q-SUPERLINEAR CONVERGENCE OF A COLLINEAR SCALING ALGORITHM FOR UNCONSTRAINED OPTIMIZATION* , 1980 .

[33]  Hiroshi Yamashita A globally convergent primal-dual interior point method for constrained optimization , 1998 .

[34]  Wenyu Sun,et al.  Nonmonotone adaptive trust-region method for unconstrained optimization problems , 2005, Appl. Math. Comput..

[35]  Zhenhai Liu,et al.  An adaptive retrospective trust region method for unconstrained optimization , 2010, The 2nd International Conference on Information Science and Engineering.