Bispectral analysis and reconstruction in the frequency domain of mono- and bidimensional deterministic sampled signals

Deterministic sampled signals bispectra are periodic and hold more information than analog signal bispectra. After showing this difference, the communication presents two algorithms for reconstructing a sampled signal Fourier transform from its bispectrum: the first is a least squares reconstruction method deducing the Fourier transform logarithm from the bispectrum logarithm through a simple average; the second is an algorithm for reconstructing the Fourier transform from a restricted number of values on the bispectrum diagonal slice by a simple resolution of linear equations. The resistance of both algorithms to the measurement noise is given.

[1]  A. Mecozzi,et al.  Gain and noise in rare-earth-doped optical fibers , 1991 .

[2]  Chrysostomos L. Nikias,et al.  The complex cepstrum of higher order cumulants and nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  A. M. Darling,et al.  Blind deconvolution for referenceless speckle imaging , 1990, Optics & Photonics.

[4]  Dennis M. Goodman,et al.  Bispectral-based optimization algorithms for speckle imaging , 1990, Optics & Photonics.

[5]  A. Papoulis Signal Analysis , 1977 .

[6]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[8]  A. Murat Tekalp,et al.  Higher-order spectrum factorization in one and two dimensions with applications in signal modeling and nonminimum phase system identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  G. Giannakis,et al.  FIR modeling using log-bispectra: weighted least-squares algorithms and performance analysis , 1991 .

[10]  Hiroaki Takajo,et al.  Least-squares phase recovery from the bispectrum phase: an algorithm for a two-dimensional object , 1991 .

[11]  Francois Roddier,et al.  Triple correlation as a phase closure technique , 1986 .

[12]  G. P. Weigelt,et al.  Modified astronomical speckle interferometry “speckle masking” , 1977 .

[13]  C. Haniff Least-squares Fourier phase estimation from the modulo 2π bispectrum phase , 1991 .

[14]  A. Lannes Backprojection mechanisms in phase-closure imaging. Bispectral analysis of the phase-restoration process , 1989 .

[15]  F. Roddier,et al.  Interferometric imaging in optical astronomy , 1988 .

[16]  Jerry M. Mendel,et al.  Linear modeling of multidimensional non-gaussian processes using cumulants , 1990, Multidimens. Syst. Signal Process..

[17]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[18]  R. Field,et al.  Properties of higher‐order correlations and spectra for bandlimited, deterministic transients , 1992 .

[19]  A. T. Erdem,et al.  Two-dimensional Higher-order Spectrum Factorization With Application In Nongaussian Image Modeling , 1989, Workshop on Higher-Order Spectral Analysis.

[20]  A W Lohmann,et al.  Phase and amplitude recovery from bispectra. , 1984, Applied optics.

[21]  T.J. Ulrych,et al.  Phase estimation using the bispectrum , 1984, Proceedings of the IEEE.

[22]  M. R. Raghuveer,et al.  Two-dimensional Non-minimum Phase Signal Reconstruction , 1989, Workshop on Higher-Order Spectral Analysis.

[23]  Charles L. Matson Weighted least-squares phase reconstruction from the bispectrum , 1990, Optics & Photonics.

[24]  Georgios B. Giannakis,et al.  Translation, rotation and scaling invariant object and texture classification using polyspectra , 1990 .

[25]  Chrysostomos L. Nikias,et al.  Phase reconstruction in the trispectrum domain , 1987, IEEE Trans. Acoust. Speech Signal Process..

[26]  A. Lohmann,et al.  Speckle masking in astronomy: triple correlation theory and applications. , 1983, Applied optics.

[27]  A. Lohmann,et al.  Triple correlations , 1984, Proceedings of the IEEE.

[28]  Georgios B. Giannakis,et al.  Signal reconstruction from multiple correlations: frequency- and time-domain approaches , 1989 .

[29]  M. Rosenblatt,et al.  Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .

[30]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .

[31]  J. Marron,et al.  Unwrapping algorithm for least-squares phase recovery from the modulo 2π bispectrum phase , 1990 .