A variational approach to cardiac motion estimation based on covariant derivatives and multi-scale Helmholtz decomposition

The investigation and quantification of cardiac motion is important for assessment of cardiac abnormalities and treatment effectiveness. Therefore we consider a new method to track cardiac motion from magnetic resonance (MR) tagged images. Tracking is achieved by following the spatial maxima in scale-space of the MR images over time. Reconstruction of the velocity field is then carried out by minimizing an energy functional which is a Sobolev-norm expressed in covariant derivatives. These covariant derivatives are used to express prior knowledge about the velocity field in the variational framework employed. Furthermore, we propose a multi-scale Helmholtz decomposition algorithm that combines diffusion and Helmholtz decomposition in one non-singular analytic kernel operator in order to decompose the optic flow vector field in a divergence free, and rotation free part. Finally, we combine both the multi-scale Helmholtz decomposition and our vector field reconstruction (based on covariant derivatives) in a single algorithm and show the practical benefit of this approach by an experiment on real cardiac images.

[1]  Mads Nielsen,et al.  Feature-Based Image Analysis , 2003, International Journal of Computer Vision.

[2]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[3]  Luc Florack,et al.  Representation and manipulation of images based on linear functionals , 2005 .

[4]  F. Prinzen,et al.  Increase in left ventricular torsion‐to‐shortening ratio in children with valvular aortic stenosis , 2004, Magnetic resonance in medicine.

[5]  Mads Nielsen,et al.  What Do Features Tell about Images? , 2001, Scale-Space.

[6]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[7]  Ali Shokoufandeh,et al.  Combining Different Types of Scale Space Interest Points Using Canonical Sets , 2007, SSVM.

[8]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[9]  Todor Georgiev,et al.  RELIGHTING, RETINEX THEORY, AND PERCEIVED GRADIENTS , 2005 .

[10]  Luc Florack,et al.  A Linear Image Reconstruction Framework Based on Sobolev Type Inner Products , 2005, International Journal of Computer Vision.

[11]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[13]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[14]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[15]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[16]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[17]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[18]  Lewis D. Griffin,et al.  Scale Space Methods in Computer Vision , 2003, Lecture Notes in Computer Science.

[19]  Luc Florack,et al.  Coarse-to-Fine Image Reconstruction Based on Weighted Differential Features and Background Gauge Fields , 2009, SSVM.

[20]  Luc Florack,et al.  Extraction of Cardiac Motion Using Scale-Space Features Points and Gauged Reconstruction , 2009, CAIP.

[21]  L. Florack,et al.  Purely Evidence Based Multiscale Cardiac Tracking Using Optic Flow , 2007 .

[22]  Timo Kohlberger,et al.  Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.

[23]  Luc Florack,et al.  Image Reconstruction from Multiscale Critical Points , 2003, Scale-Space.

[24]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[26]  Per-Erik Forssén,et al.  Low and Medium Level Vision Using Channel Representations , 2004 .

[27]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[28]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[29]  Luc Florack,et al.  Optic Flow from Multi-scale Dynamic Anchor Point Attributes , 2006, ICIAR.

[30]  C. W. Groetsch,et al.  Elements of applicable functional analysis , 1980 .

[31]  Max A. Viergever,et al.  Detection of Critical Structures in Scale Space , 1999, Scale-Space.

[32]  Gustav J. Strijkers,et al.  Cardiac Strain and Rotation Analysis Using Multi-scale Optical Flow , 2011 .

[33]  Luc Florack,et al.  A New Methodology for Multiscale Myocardial Deformation and Strain Analysis Based on Tagging MRI , 2010, Int. J. Biomed. Imaging.

[34]  L. Florack,et al.  ScaleSpaceViz: α-Scale spaces in practice , 2007, Pattern Recognition and Image Analysis.

[35]  Prashant Parikh A Theory of Communication , 2010 .

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[37]  Luc Florack,et al.  Linear Image Reconstruction from a Sparse Set of alpha-Scale Space Features by Means of Inner Products of Sobolev Type , 2005, DSSCV.

[38]  E L Bolson,et al.  Variability in the measurement of regional left ventricular wall motion from contrast angiograms. , 1983, Circulation.

[39]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[40]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[41]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[42]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[43]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[44]  Jerry L Prince,et al.  Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[45]  M. Pfeffer,et al.  The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. , 1983, Circulation research.

[46]  Luc Florack,et al.  Cardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition , 2011, STACOM.

[47]  Lmj Luc Florack,et al.  Scale Space Representations Locally Adapted to the Geometry of Base and Target Manifold , 2012, Mathematical Methods for Signal and Image Analysis and Representation.

[48]  Jerry L Prince,et al.  Stochastic models for DIV-CURL optical flow methods , 1996, IEEE Signal Processing Letters.

[49]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[50]  G. Arfken Mathematical Methods for Physicists , 1967 .

[51]  J. Nash,et al.  PARABOLIC EQUATIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[53]  J. Damon Local Morse Theory for Solutions to the Heat Equation and Gaussian Blurring , 1995 .

[54]  C. Horgan,et al.  Bounds on eigenvalues of Sturm-Liouville problems with discontinuous coefficients , 1979 .

[55]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[56]  A Alessandro Becciu,et al.  Feature based estimation of myocardial motion from tagged MR images , 2010 .

[57]  Remco Duits,et al.  Linear Image Reconstruction by Sobolev Norms on the Bounded Domain , 2007, SSVM.

[58]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[59]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[60]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.