Euclidean Distance Based Permutation Methods in Atmospheric Science

The majority of existing statistical methods inherently involve complex nonmetric analysis spaces due to their least squares regression origin; consequently, the analysis space of such statistical methods is not consistent with the simple metric Euclidean geometry of the data space in question. The statistical methods presented in this paper are consistent with the data spaces in question. These alternative methods depend on exact and approximate permutation procedures for univariate and multivariate data involving cyclic phenomena, autoregressive patterns, covariate residual analyses including most linear model based experimental designs, and linear and nonlinear prediction model evaluations. Specific atmospheric science applications include climate change, Atlantic basin seasonal tropical cyclone predictions, analyses of weather modification experiments, and numerical model evaluations for phenomena such as cumulus clouds, clear-sky surface energy budgets, and mesoscale atmospheric predictions.

[1]  Frank P. Kelly,et al.  Imagery Randomized Block Analysis (IRBA) Applied to the Verification of Cloud Edge Detectors , 1989 .

[2]  P. Mielke,et al.  Multivariate Tests for Correlated Data in Completely Randomized Designs , 1999 .

[3]  J C Anderson,et al.  Lead concentrations in inner-city soils as a factor in the child lead problem. , 1983, American journal of public health.

[4]  P. Mielke,et al.  Computation of exact probability values for multi-response permutation procedures (MRPP) , 1984 .

[5]  George Finlay Simmons,et al.  Introduction to Topology and Modern Analysis , 1963 .

[6]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[7]  I. Watterson,et al.  Non-Dimensional Measures of Climate Model Performance , 1996 .

[8]  P. Mielke,et al.  Asymptotic normality of MRPP statistics from invariance principles of u-statistics , 1980 .

[9]  F9. L1, L2 and L∞ regression models: Is there a difference? , 1987 .

[10]  O. Sheynin,et al.  R. J. Boscovich's work on probability , 1973, Archive for History of Exact Sciences.

[11]  Kenneth J. Berry,et al.  Permutation Covariate Analyses of Residuals Based on Euclidean Distance , 1997 .

[12]  Carl P. Schmertmann,et al.  Assessing Forecast Skill through Cross Validation , 1994 .

[13]  M. Denker,et al.  Asymptotic behavior of multi-response permutation procedures , 1988 .

[14]  J. I The Design of Experiments , 1936, Nature.

[15]  P. Mielke Non-metric statistical analyses: Some metric alternatives☆ , 1986 .

[16]  P. Mielke,et al.  Moment approximations as an alternative to the F test in analysis of variance , 1983 .

[17]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[18]  P. Mielke,et al.  Clarification and Appropriate Inferences for Mantel and Valand's Nonparametric Multivariate Analysis Technique , 1978 .

[19]  Robert E. Davis,et al.  Statistics for the evaluation and comparison of models , 1985 .

[20]  J. Michaelsen Cross-Validation in Statistical Climate Forecast Models , 1987 .

[21]  G. Brier,et al.  A Statistical Reanalysis of the Replicated Climax I and II Wintertime Orographic Cloud Seeding Experiments. , 1981 .

[22]  P. Mielke,et al.  An Exploratory Analysis of Crop Hail Insurance Data for Evidence of Cloud Seeding Effects in North Dakota , 1997 .

[23]  P. Mielke,et al.  The verification of numerical models with multivariate randomized block permutation procedures , 1989 .

[24]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[25]  Kenneth J. Berry,et al.  Permutation-based multivariate regression analysis: The case for least sum of absolute deviations regression , 1997, Ann. Oper. Res..

[26]  Kenneth J. Berry,et al.  A Single-Sample Estimate of Shrinkage in Meteorological Forecasting , 1997 .

[27]  E. J. Hannan TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION , 1957 .

[28]  T. L. Kelley,et al.  An Unbiased Correlation Ratio Measure. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[29]  C. Willmott,et al.  COMPARISON OF APPROACHES FOR ESTIMATING TIME-AVERAGED PRECIPITATION USING DATA FROM THE USA , 1996 .

[30]  P. Mielke,et al.  A Generalization of Cohen's Kappa Agreement Measure to Interval Measurement and Multiple Raters , 1988 .

[31]  P. Mielke,et al.  A Family of Multivariate Measures of Association for Nominal Independent Variables , 1992 .

[32]  Paul W. Mielke,et al.  On asymptotic non-normality of null distributions of mrpp statistics , 1979 .

[33]  Kenneth J. Berry,et al.  Multi-response permutation procedures for a priori classifications , 1976 .

[34]  P. Mielke,et al.  Climax I and II: Distortion Resistant Residual Analyses , 1982 .

[35]  Modeling the clear‐sky surface energy budget during FIFE 1987 , 1995 .

[36]  W. M. Gray,et al.  Artificial Skill and Validation in Meteorological Forecasting , 1996 .

[37]  C. Willmott ON THE VALIDATION OF MODELS , 1981 .

[38]  P. Mielke,et al.  Application of multi‐response permutation procedures and median regression for covariate analyses of possible weather modification effects on hail responses , 1983 .

[39]  Phipps Arabie,et al.  Was euclid an unnecessarily sophisticated psychologist? , 1991 .

[40]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[41]  P. Brockwell,et al.  On Non-Normal Invariance Principles for Multi-Response Permutation Procedures , 1982 .

[42]  William R. Cotton,et al.  Real-Time Mesoscale Prediction on Workstations , 1994 .

[43]  P. Mielke The application of multivariate permutation methods based on distance functions in the earth sciences , 1991 .

[44]  Paul W. Mielke,et al.  34 Meteorological applications of permutation techniques based on distance functions , 1984, Nonparametric Methods.

[45]  D. D. Walker,et al.  Permutation Methods for Determining the Significance of Spatial Dependence , 1997 .

[46]  Ian Barrodale,et al.  Algorithm 478: Solution of an Overdetermined System of Equations in the l1 Norm [F4] , 1974, Commun. ACM.

[47]  C. Schmertmann,et al.  Improving Extended-Range Seasonal Predictions of Intense Atlantic Hurricane Activity , 1993 .

[48]  J. Robinson APPROXIMATIONS TO SOME TEST STATISTICS FOR PERMUTATION TESTS IN A COMPLETELY RANDOMIZED DESIGN1 , 1983 .

[49]  P. Mielke,et al.  Permutation Tests for Common Locations Among Samples With Unequal Variances , 1994 .

[50]  Kenji Matsuura,et al.  Smart Interpolation of Annually Averaged Air Temperature in the United States , 1995 .

[51]  Paul W. Mielke Geometric concerns pertaining to applications of statistical tests in the atmospheric sciences , 1985 .

[52]  Kenneth J. Berry,et al.  Application of Multi-Response Permutation Procedures for Examining Seasonal Changes in Monthly Mean Sea-Level Pressure Patterns , 1981 .

[53]  Kenneth J. Berry,et al.  An extended class of permutation techniques for matched pairs , 1982 .

[54]  H. Iyer,et al.  Permutation techniques for analyzing multi-response data from randomized block experiments , 1982 .

[55]  Carl Friedrich Gauss Theoria motus corporum coelestium , 1981 .

[56]  B. M. Brown,et al.  Cramer-von Mises distributions and permutation tests , 1982 .

[57]  Kenneth J. Berry,et al.  Predicting Atlantic Seasonal Hurricane Activity 6–11 Months in Advance , 1992 .

[58]  J. Elsner,et al.  Extended‐range hindcasts of tropical‐origin Atlantic hurricane activity , 1994 .

[59]  P. Mielke,et al.  Least Sum of Absolute Deviations Regression: Distance, Leverage, and Influence , 1998 .

[60]  W. Rudin Real and complex analysis , 1968 .

[61]  I. Barrodale,et al.  An Improved Algorithm for Discrete $l_1 $ Linear Approximation , 1973 .

[62]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.