Control of plasmon emission and dynamics at the transition from classical to quantum coupling.

With nanosecond radiative lifetimes, quenching dominates over enhancement for conventional fluorescence emitters near metal interfaces. We explore the fundamentally distinct behavior of photoluminescence (PL) with few-femtosecond radiative lifetimes of a coupled plasmonic emitter. Controlling the emitter-surface distance with subnanometer precision by combining atomic force and scanning tunneling distance control, we explore the unique behavior of plasmon dynamics at the transition from long-range classical resonant energy transfer to quantum coupling. Because of the ultrafast radiative plasmon emission, classical quenching is completely suppressed. Field-enhanced behavior dominates until the onset of quantum coupling dramatically reduces emission intensity and field enhancement, as verified in concomitant tip-enhanced Raman measurements. The entire distance behavior from tens of nanometers to subnanometers can be described using a phenomenological rate equation model and highlights the new degrees of freedom in radiation control enabled by an ultrafast radiative emitter near surfaces.

[1]  Andreas Otto,et al.  What is observed in single molecule SERS, and why? , 2002 .

[2]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[3]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[4]  B. Persson,et al.  Electron-hole-pair quenching of excited states near a metal , 1982 .

[5]  R. Gelfand,et al.  Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime. , 2014, Optics express.

[6]  Katrin F. Domke,et al.  Direct monitoring of plasmon resonances in a tip-surface gap of varying width , 2007 .

[7]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[8]  D. Courjon,et al.  Influence of the water layer on the shear force damping in near-field microscopy , 1998 .

[9]  Mustafa Yorulmaz,et al.  Luminescence quantum yield of single gold nanorods. , 2012, Nano letters.

[10]  Markus B. Raschke,et al.  Plasmonic light scattering from nanoscopic metal tips , 2005 .

[11]  Stephan Link,et al.  Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. , 2012, ACS nano.

[12]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[13]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[14]  Biao Wu,et al.  Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering , 2009, 0901.0607.

[15]  Alfred J. Meixner,et al.  Plasmon-Enhanced Emission in Gold Nanoparticle Aggregates , 2008 .

[16]  M. Raschke,et al.  Ultrafast and Nonlinear Plasmon Dynamics , 2013 .

[17]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[18]  A. Kudelski,et al.  SERS on carbon chain segments: monitoring locally surface chemistry , 2000 .

[19]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[22]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[23]  L. Rogobete,et al.  Coupling of plasmonic nanoparticles to their environments in the context of van der Waals-Casimir interactions , 2007, 0711.3655.

[24]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[25]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[26]  Mark I. Stockman,et al.  Plasmonics: Theory and Applications , 2013 .

[27]  R. Olmon,et al.  Antenna–load interactions at optical frequencies: impedance matching to quantum systems , 2012, Nanotechnology.

[28]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[29]  W. Schneider,et al.  Luminescence experiments on supported molecules with the scanning tunneling microscope , 2010 .

[30]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[31]  H. Minassian,et al.  Radiation Damping of Surface Plasmons in a Pair of Nanoparticles and in Nanoparticles near Interfaces , 2012 .

[32]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[33]  Khaled Karrai,et al.  Interfacial shear force microscopy , 2000 .

[34]  K. Drexhage,et al.  IV Interaction of Light with Monomolecular Dye Layers , 1974 .

[35]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[36]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[37]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[38]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[39]  Ulrich Hohenester,et al.  Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. , 2012, Nano letters.

[40]  Amitava Patra,et al.  Recent Advances in Energy Transfer Processes in Gold-Nanoparticle-Based Assemblies , 2012 .

[41]  B C Buchler,et al.  Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. , 2005, Physical review letters.

[42]  Christoph Lienau,et al.  Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering , 2003 .

[43]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[44]  Johansson,et al.  Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. , 1991, Physical review letters.

[45]  J. Aizpurua,et al.  Controlling subnanometer gaps in plasmonic dimers using graphene. , 2013, Nano letters.

[46]  Tian Ming,et al.  Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement , 2012 .

[47]  Xiaoji G. Xu,et al.  Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. , 2010, Nano letters.

[48]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[49]  Ingo Köper,et al.  As flat as it gets: ultrasmooth surfaces from template-stripping procedures. , 2012, Nanoscale.

[50]  K. Kneipp,et al.  Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps , 2013 .

[51]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[52]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[53]  Marcus Sackrow,et al.  Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[54]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[55]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.